

Gauge Boson Measurements and PDF fits in the DESY ATLAS Group

<u>OUTLINE</u>

- W and Z production at LHC o electron and muon channels
- QCD analysis and sensitivity to the strange PDF o HERAFitter framework
- Prospects and concluding remarks

ATLAS Performance

Successful run in 2010 and 2011 enabled a rediscovery of SM processes at the LHC

W and Z production at LHC

0

An interesting testing ground of PDFs

Flavour decomposition of W and Z and the LHC

5

For Ws:

DESY

- ud dominates for W
 - u_{val} peaks at large rapidity
- sc important at mid y

For Z:

- all flavours contribute, even b is significant
- larger coupling to d compared to u vs γ^{\ast} due to different couplings

$$\begin{split} W^+ &\sim 0.95 (u \bar{d} + c \bar{s}) + 0.05 (u \bar{s} + c \bar{d}) \\ W^- &\sim 0.95 (d \bar{u} + s \bar{c}) + 0.05 (d \bar{c} + s \bar{u}) \end{split}$$

$$Z \sim 0.29(u\bar{u} + c\bar{c}) + 0.37(d\bar{d} + s\bar{s} + b\bar{b})$$

$$\gamma^* \sim 0.44(u\bar{u} + c\bar{c}) + 0.11(d\bar{d} + s\bar{s} + b\bar{b})$$

$W \rightarrow Iv$ selection

$Z \rightarrow II$ selection (central region)

- Single lepton triggers with high efficiency:
 - o p_{T,I} > 20 GeV
 - Central Z:
 - + Both $|\eta_e|$ <2.47, $|\eta_\mu|$ <2.4
 - Forward Z:
 - One $|\eta_e| < 2.47$
 - Other 2.5< $|\eta_e|$ <4.9
 - o Opposite charge leptons
 - o 66<mll <116 GeV
- 10-12 K candidates with 1~2% background

$Z \rightarrow II$ selection (forward region)

- Single lepton triggers with high efficiency:
 - o p_{T,I} > 20 GeV
 - Central Z:
 - + Both $|\eta_e|$ <2.47, $|\eta_\mu|$ <2.4
 - Forward Z:
 - One $|\eta_e|$ <2.47
 - Other 2.5< $|\eta_{\rm e}|$ <4.9
 - o Opposite charge leptons
 - o 66<mll <116 GeV
- 10-12 K candidates with 1~2 % background

Electron-Muon Universality

- The e and µ cross-section measurements are extrapolated from the fiducial volume to the common phase space.
- Ratio of cross-section measurements in e and µ channel provides lepton universality check.

Comparison to World Data

- The measured values of σ_W (xBR) and σ_Z (xBR) are combined for electronmuon channels and extrapolated to the full space
- Measurements are compared to other data and theory predictions at NNLO (MSTW2008) for both pp and ppbar colliders

Total vs Fiducial Volume Cross Sections Results

W and Z (pseudo)-rapidity Differential Cross Section

- The electron and muon measurements are found to be consistent in the three channels: W+, W-, Z
- Data sets are therefore combined using a method which accounts for the different systematic error correlations (developed at DESY)
 - Combination yields an accurate rapidity dependent cross sections with a precision in the fiducial region of 2% (apart from very forward region)

Comparison with PDF predictions at NNLO

- Measurements of differential cross sections are compared to NNLO predictions based on NNLO PDFs:
 - have the potential to bring impact on PDFs, as there is some tension among PDF sets, especially for the Z cross sections where all PDF considered have a suppressed strange quark density.

 \rightarrow ratio of W/Z cross sections may give a handle on s-quark density.

DESY

QCD Analysis Framework: HERAFitter

PDFs are extracted through QCD Fit analysis:

- Open source HERAFitter framework http://projects.hepforge.org/herafitter/
- o Fits performed at NNLO
- W, Z cross sections are calculated via APPLGRID interfaced to MCFM at NLO and then applied kfactors from NLO to NNLO calculated with the parton-level programs DYNNLO and FEWZ
- Electroweak parameters are calculated in the G_mu scheme, where remaining HO EW and QCD corrections are included in the definitions of the couplings/widths
- HERAFitter is a modular platform: (developed at DESY) **Interfaces:** Used for Various cross sections **PDF** evolution **QCDNUM** calculation **QCDNUM** ZMSTF **FastNLO** HOSTF Applgrid RT H1Fitter Hathor ACOT External PDF comparisons LHAPDF Used for structure function HERA Fitter Meeting - 12/02/12 - Krzysztof Nowak calculation

ATLAS determination of the strange sea density

- To assess the impact of ATLAS data, a minimum set of input data are used to allow PDF determination:
 - HERA I combined data [JHEP 01, 109, 2010]
 v NC, CC e+p and e-p 1<Q²<10000 and 0.0001<x<0.65

ATLAS W, Z data [CERN-PH-EP-2011-06]

- Two types of fit are performed with different treatments of strangeness:
 - o Fixed Strange fit: At the starting scale, strange is fully coupled to down sea

 $r_s = 0.5(s+\bar{s})/\bar{d}, r_s = 0.5$

o <u>Free Strange fit</u>: parametrise strange distribution as done with other individual PDFs

 $x\overline{s} = xs = r_s A_{\overline{d}} x^{B_{\overline{d}}} (1-x)^{C_s}$

For the region at the maximum of ATLAS data sensitivity extrapolated to low Q²

 $r_s = 1.00 \pm 0.20 \exp \pm 0.07 \mod_{-0.15}^{+0.10} \Pr_{-0.07}^{+0.06} \alpha_s \pm 0.08$ th.

Fit with fixed $r_s = 0.5$		Fit with	free st
annel	Partial $\chi^2/N_{\rm DF}$	Channel	Partia
ematics	5.4	Systematics	
ГLAS	44.2/30	Total ATLAS	
LAS+HER/	A 477.1/567	Total ATLAS+H	ERA

The results for NNLO fits with free and fixed strangeness

- o For W+ and W- there is little difference
- o For Z instead, the total cross section is increased and the shape is modified.

ATLAS result is consistent with CT10 (NLO) and is above MSTW08, ABKM09 and NNPDF2.1 (NNLO) determinations

Strange distribution

- Comparisons of the strange quark density resulting from the present free strangeness epWZ fit with the predictions of different PDF sets.
- A change of the strange density with fixed F2 measured by HERA must affect the light sea xΣ.
 - o Enhancement by about 8% at the starting scale
- The free strange fit provides the best description of the measured W/Z cross sections ratio.

Concluding Remarks

- Precision standard model results already with 2010 data.
 - W and Z inclusive cross section in electron and muon channels measured in 2010 dataset with ~ 1% experimental precision and 1.5 2% theoretical uncertainty for the extrapolation to full phase-space
 - Absolute rapidity differential cross sections are measured in electron and muon channels and combined with accuracy of ~ 2 % for bulk of measurement bins (central yZ and all W) and of 6 - 10 % for forward Z region
- The first differential W[±], Z cross section data of ATLAS, jointly analysed with e[±]p cross sections from HERA, suggest that the light quark sea is flavour symmetric and increased by ~8%.
- More is to come:
 - o 2011 data have ample of statistics for differential W, Z and low/high mass γ^* analyses.

FIG. 4. Comparison of $xu_v(x)$, $xd_v(x)$, xg(x), $x\bar{u}(x)$, $x\bar{d}(x)$ and $x\bar{s}(x)$ distributions and their experimental uncertainty for the epWZ fixed \bar{s} and free \bar{s} NNLO fits at the starting scale $Q^2 = 1.9 \text{ GeV}^2$.