DESY-KEK Collaboration meeting March 19, 2012 DESY

Recent SCRF Activities at KEK STF/CFF

Seiya Yamaguchi

Topics

- **1. HG performance and problems**
- 2. Parameter search for EBW
- 3. HOM coupler for ERL cavity
- 4. Beam operation at STF

1. HG performance and problems

- Gradient is increasing step by step
- Problems Degradation, defect after EP

Degradation problem

- degradation is 13% (av.) , 40%(max)
- Need to identify the reason of degradation. Contamination? Which process?
- Is HT using CHECIA(-like) system useful?

Defect after EP

schematic of the welding point

- defects frequently appeared after EP
- defect is made during EBW(?)
- can be recovered by local grinding
- need establish optimum EBW condition

Local grinder

2. Parameter search for EBW

CFF (Cavity Fabrication Facility)

Clean room

Press machine

EBW

vertical lathe

EP was finished
waiting for VT (March 29)

EBW machine

- 60-150 kV
- 0-100 mA
- 1,500(W) X 2,200(H) X 3,200 (D)
- 10 min. to reach 10⁻² Pa
- gun position ceiling, side wall (1m stroke)

Parameter search for EBW

(A) simple plate

bead on Nb simple plate

(A) simple plate

 $\triangle I_L$ =0:just focus

- Lower voltage has wider area of good condition.
- dependency on focus current shows opposite tendency.

Plan:

vary parameters more

- HV(90 kV, 150 kV, ...)
- WD
- moving speed
- gun position
- etc.

observe bead cross section

Parameter for Ti-Nb EBW

End plate(Ti) + Nb ring

melting point: Nb 2415 °C Ti 1668 °C

→ offset is necessary
 1.5 mm is optimum.

Temperature distribution near Ti-Nb joint (ANSYS)

3. HOM coupler for ERL-injector cavity

- design value for ERL:15 MV/m
- Eacc is limited by heat at HOM coupler

	cavity	beam pipe
TESLA	"TESLA"	84 mm
ERL		88 mm

antenna of HOM coupler

- thermal anchor to Lq. He ~
- inner con. : Kovar to Mo
- outer con. : Kovar to Cu
- CP around brazing point

VT result (5th) for ERL 2cell cavity with HOM

Beam operation - 2

STF Phase 2 (2012-2014)

RDR 1 RF unit = 1 MBK+3 CM \rightarrow 1 CM 20x2+31.5x8 \rightarrow 292MeV 3.2 nC x 2,625 bunch \rightarrow 9mA, 5Hz

schedule: VT (2012), Assemble (2013), Beam test (2014)

Summary

- *E*_{acc} is increasing step by step, but there are two problems degradation and defect.
- Started parameter search for EBW.
- ERL 2-cell cavity achieved 50 MV/m by improvement of HOM coupler.
- Started beam operation at STF.