

Detector development activities at DESY FS-DS

14

500

1000

1500

2000

2500

3000

7.798

4.954

RMS Y

Julian Becker Photon Science Detector Group, DESY

- Introduction to our group: DESY FS-DS
- Projects for synchrotron radiation detectors
 - LAMBDA
 - High-Z pixel detectors (hard X-ray detectors)
 - PERCIVAL
- Project for the European XFEL
 AGIPD

Our group: DESY FS-DS

Heinz Graafsma Group leader

Michael Lohmann Detector scientist

Trixi Wunderer Detector scientist

Ulrich Trunk Detector scientist

David Pennicard Postdoc

Laura Bianco Postdoc

Julian Becker Postdoc

Alessandro Marras Postdoc

Matthias Bayer Mechanical engineer

Björn Nilsson **Mechanical** technician

Alexander Kluyev Engineer-physicist

Sabine Lange Electronic engineer

Sergej Smoljanin Electronic technician

Our detector development projects (all collaborations)

LAMBDA (Large Area Medipix3-Based Detector Array)

Photon counting pixel detector module

> High-Z detectors (Ge, HiZpad collaboration, GALAPAD)

New semiconductor pixel detectors for hard X-rays

- > PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large)
 - Low E (250 eV 1 keV) imaging detector

>AGIPD (Adaptive Gain Integrating Pixel Detector)

2D detector for XFEL, developed with PSI, Uni Hamburg, Uni Bonn

>DSSC (DEPMOS Sensor with Signal Compression)

XFEL detector project, led by MPI-HLL, Munich

CAMP (CFEL-ASG Multi-Purpose) Chamber

- Already in use at LCLS
- Detector and science simulation (HORUS)
- > XNAP (2D array of avalanche photodiodes)
 - Collaboration with ESRF, U. Heidelberg, SPring-8, Exelitas
- Diamond beam position monitors with RF readout
 - Collaboration with ESRF
- > Detector loan pool
 - Pool of a variety of detectors (Pilatus, Maxipix, CCDs, imaging plates, etc.) and associated equipment to support user operation at photon sources.

Hybrid pixel detectors (counting)

Medipix3 readout chip

- > 21 groups in collaboration
 - Chip design at CERN
- Successor to Medipix2 (Maxipix)
- > 256 * 256 pixels, 55µm
- > 2 counters per pixel for deadtime-free readout
 - Up to 2000 fps with 12 bit counter depth
- "Charge summing" circuitry to compensate charge sharing effects
 - More reliable hit detection
 - Better energy discrimination

Hybrid pixels and X-ray detection

- First generation of X-ray hybrid pixels in use
 - Pilatus (Dectris, PSI; 172 µm pixels)
 - Maxipix (ESRF, Medipix2; 55µm pixels)
- > Advantages
 - Single photon counting ("noise free")
 - Fast readout
 - Large dynamic range
 - Energy discrimination
- > Disadvantages
 - Pixel-to-pixel variation in electronics (must be calibrated)
 - Poor efficiency at high energies
 - Problems at high flux rates

Detector developments at DESY

> LAMBDA (Large Area Medipix-Based Detector Array)

- Large detector modules using new Medipix3 chip
- 55µm pixel size, fast readout, greater functionality

"High-Z" semiconductors (Ge, HiZpad, GALAPAD)

- Si has poor absorption efficiency > 20 keV
- Heavier semiconductors (Ge, CdTe, GaAs) allow hard X-ray detection

PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large)

- Low E (250 eV 1 keV) CMOS detector with 25 µm pixel size
- Designed by STFC, readout by DESY

> AGIPD (Adaptive Gain Integrating Pixel Detector)

- Integrating detector with dynamic gain switching
- In-pixel storage for ultra fast (4.5 MHz) imaging at XFEL

LAMBDA detector head

- Large sensor area
 - 2-by-6-chip layout
 - 1536*512 pixel, 84 mm * 28 mm
 - Set by typical silicon and high-Z wafer sizes (6", 3")
- Suitable for high-speed readout
- Low-temp operation possible
- > Modular design
 - Multiple readout chips build a single module
 - Multiple modules tiled in large system

First prototype systems

- > 4 modules built with "quad" sensors (2*2 chip, 512*512 pixels)
- Mechanics with Peltier cooling
- Electronics to one side of sensor (but right-angle connector now available)
- Prototype readout board (completed)
 - USB2 communication with control PC (10 frames per second with large-area sensor should be possible)
- > High-speed readout
 - Common readout mezzanine board being developed for LAMBDA, PERCIVAL and AGIPD
 - Multiple 10 Gigabit Ethernet links for full-speed readout

Test results so far

- > Quad detectors are functional
- Full-size sensor currently being bump-bonded at IZM
- > Working on high-speed readout

High-Z materials – X-ray absorption efficiency

- Replacing Si with high-Z material could combine hybrid pixel advantages with high efficiency with hard X-rays
- However, each high-Z material has its downsides!

Our projects:

- Germanium development with Canberra and IZM (Berlin)
 - Cadmium Telluride HiZPAD consortium (led by ESRF)
 - Gallium Arsenide Russian-German partnership with FMF, KIT, JINR (Dubna) and RID Ltd. (Tomsk)

Germanium sensor production and bump bonding

Sensor structure (Canberra)

- Modification of existing strip detector technology
- 55µm pixels, 700 µm thick
- Indium bump bonding (IZM)
 - Sensor and ASIC bonded at T < 100°C</p>
 - During cooling, ductility of Indium compensates for mismatch in contraction
- > 2 high purity Ge wafers plus mechanical dummies received from Canberra
 - 16 Medipix3 singles / wafer
 - IZM optimizing process using dummies
 - HP Ge bonding follows soon
- Readout and mechanics by DESY (LAMBDA framework)

Cadmium Telluride

- > HiZPAD (High-Z sensors for Pixel Array Detectors)
 - EU-funded consortium 12 institutes (led by ESRF)
- CdTe (Z_{Cd,Te} = 48, 52, Z_{Si} = 14)
 - Already used in single-element detectors / small arrays
 - Small wafers (3"), often with inhomogeneities
- Tested CdTe sensor with Medipix2 readout
 - 55µm pixel, 256 * 256 array, 1000 µm thick
 - Tests done at DORIS III BW5 beam line (160 keV photons)

PERCIVAL project

Aspired performance parameters:

- Primary energy range 250 eV 1 keV (will work from <200 eV to few keV)
- 12 μ m Si sensitive volume with 25 μ m pixels \Rightarrow 4k × 4k pixel sensor
- 4 sensors in cloverleaf arrangement can make up 64 Mpixel (20cm x 20cm)
- back-illuminated, back-thinned for uniform QE > 90%
- 120 Hz frame rate and lower
- 2-side buttable (space between active pixel edges on the order of 1mm)
- electronic noise < 15e-, "full well" ~ 20 Me-
- Multi-gain approach to access full dynamic range, all gains active all the time

- Introduction to our group: DESY FS-DS
- Projects for synchrotron radiation detectors
 - LAMBDA
 - High-Z pixel detectors (hard X-ray detectors)PERCIVAL
- Project for the European XFEL
 AGIPD

The European XFEL

17.5 GeV linear electron accelerator producing 12.4 keV x-rays (tunable) through FEL process unprecedented peak brilliance user facility: common infrastructure shared by many experiments

> 3.4 km long 12-44 m deep

> > W W W W W W W W W W W W

DESY Switch Building (Osdorfer Born)

www.xfel.eu

Experimental Hall (Schenefeld)

European

XF

Single shot imaging...

XFEL pulse trains

Special structure of pulse trains:

- 600 µs long pulse trains at a repetition rate of 10 Hz
- Each train consists of 2700 pulses with a separation of 220 ns
- Each (SASE) pulse consists of ≈10¹² photons arriving <100 fs
- Beam energy:
- 5 25 keV (depends on station)
- 12.4 keV (λ=0.1 nm) nominal design energy for AGIPD

XFEL Detector requirements

XFEL challenges

XFEL provides

Simultaneous deposition of all photons

<u>Challenges</u>

- Single photon counting not possible
- Dynamic range: 10⁴ photons/pixel \rightarrow 3 gain stages with single photon sensitivity

<u>Approach</u>

- Charge integration
 - Dynamic gain switching

 - \rightarrow Single photon sensitivity in highest gain

- High number of bunches
- \rightarrow 2700 bunches per train (600 µs)
- Reading out of single frames during pulse train impossible
- Analog memory in the pixel using the ≈350 storage cells per pixel

AGIPD ASIC

Imaging with AGIPD 0.2 prototype

The detector layout

Upgradable to 4 Mpix

> <u>Specifications:</u>

- 8 chips I Mpixel 2 chips module 4 quadrants single ____ 4 modules per quadrant chip quadrant ~ 2mn I module: 8 x 2 chips, 1 chip: 64 x 64 pixels -220 mm 200 x 200 µm² pixel size 500 µm silicon sensor Hole for direct beam 1k x 1k (2k x 2k)
 - DESY

Summary (of detector projects)

> LAMBDA

- Large area modules (1536 * 512 pixels, 84 mm * 28 mm)
- 55 µm pixel size
- 2 kHz frame rate

> HiZ materials (Ge, GaAs, CdTe)

- Direct detection imaging at high energies
- Compatible with LAMBDA modules

> PERCIVAL

- Low energy imaging (<250 eV to >1 keV)
- 25 µm pixel size
- 120 Hz frame rate

> AGIPD

- 4.5 MHz imaging
- 10⁴ 12.4 keV γ dynamic range
- single photon sensitivity for E > 5 keV

Backup

DAQ architecture

