

DESY TEST BEAMS

Ingrid-Maria Gregor, DESY

DUTLINE

- Why test beam?
- The DESY Test beam
- Infrastructure
- Summary

DESY/KEK Meeting
DESY
March 20th 2012

Why Test Beam?

LIFE IS A TEST BEAM ...

- Detectors for High Energy Physics need to go through a very extensive test beam program during R&D phase, conception and commissioning.
- All physical properties (efficiency, spacial resolution, energy resolution ...) have to be measured precisely at at least one beam line.
 - R&D and Detector conception
 - Conceptual design, choice of detectors/ technologies
 - Technical design, prototypes construction and testing
 - Detector construction
 - Calibrations
 - Commissioning
 - Data taking
 - Analysis, systematics studies

The DESY Electron Test Beam

DESY TEST BEAM

- DESY provides three test beam lines with 1-6 GeV/c electrons
- Very simple system, no beam optics, only momentum selection via magnet.
- Bremsstrahlung beam generated by a carbon fibre in the circulating beam of the electron/ positron synchrotron DESY II.

- Photons are converted to electron/positron pairs with a metal plate.
- Beam is spread out into a horizontal fan with a dipole magnet. Collimator cuts out final beam.
- DESYII: Mainly injector for DORIS and PETRA (synchrotron sources).
- The revolution frequency is 1 MHz, the RF frequency 500 MHz, and the bunch length around 30 ps. The average radius is 46.6 m
- For DORIS: DESYII delivers every second cycle (160ms) single bunches with about 1*109 positrons at 4.5GeV (DORIS requires a slower injection)
- For PETRA III: DESYII delivers every fourth cycle (320ms) single bunches with 1*10¹⁰ positrons at 6GeV (Top-Up every 3min with 1*10**9 positrons)

DESY TEST BEAM

- Test beam runs in PETRAIII mode mode with an extraction on the falling slope (at 6GeV; with reduce beam current during top-up)
- On the falling slope to increase the time useful for test beam generation.
- Due to top-up DESYII is running day and night -> always test beam usage possible

Ideal DESY II Cycle (no extraction)

- The particle rates in the test beam are influenced by many parameters.
- Ideally, the maximum rate around 1 kHz (3 GeV, 3mm Cu convert, Collimator ca. 5mm x 5mm).

CARBON FIBRE (PRIMARY TARGET)

- The carbon fibre has a thickness of 6-10 μm.
- Six fibres are prepared inside the fibre holder. By rotation of the inner part, a broken fibre can be replaced without opening the machine vacuum.
- Carbon fibre rotation system will be modernized this year.

CONVERSION TARGET (SECONDARY TARGET)

There are different conversion targets available:

Al, Cu,

- The selection of the conversion target is under control of the test beam user.
- System will be modernized in this year.

SELECTION MAGNET LOCATION

Final collimator in area

Collimator

TEST BEAM LAYOUT

DESY

TEST BEAM LAYOUT

FACILITIES FOR TEST BEAM USER

- All three test beam lines have
 - Interlock systems
 - Magnet control to select momentum
 - Patch panels with pre-installed cables
 - Gas warning systems
 - Fast internet connection (DHCP)
 - Trigger scintillators

- Translation stages
- Premixed gases
- Superconducting Magnet (1T)
- Beam Telescopes
- The users typically bring:
 - Data Acquisition incl. computers
 - Trigger scintillators

TEST BEAM AREA 21

Recently refurbished -> Home of EUDET telescope (when at DESY)

- Pixel beam telescope permanently available
- more space usually used for calorimeter (CALICE) tests

TEST BEAM 22: ZEUS TELESCOPE

- Location of ZEUS MVD telescope (build in 1998)
- Telescope parameters:
 - 300 µm thick single-sided Si strip sensors
 - Each plane with 2 sensors perpendicular to each other
 - Strip pitch: 25μm; Readout pitch: 50μm
 - DAQ was upgraded to EUDET like system (EUDAQ)
- Plans for next years:
 - keep telescope running

DESY

TEST BEAM 24: EUDET/AIDA

Large bore magnet:

- 1Tesla, Ø≈85 cm, stand-alone He cooling, supplied by KEK
- Infrastructure (control, field mapping, etc.) through FUDFT/AIDA
- Magnet was send to KEK for the improvement of the cooling system
 - built-in helium reservoir has been removed
 - closed circuit cryogenic cooling system installed
 - allows for a safer and more efficient operation
- Returns to DESY in April

MAGNET AND TPC FIELD CAGE IN TB24

TPC field cage

The EUDET Pixel Telescope

BEAM TELESCOPE REQUIREMENTS

What is a beam telescope?

- A tool to define the exact track of a particle in a test beam very precisely.
- Used for detailed studies of newly developed detectors.
- Pointing resolution should be better than the expected intrinsic resolution of the device under test (DUT).

Generally applicable:

- DUTs: from small pixel sensors to larger detectors
- Movement of device under test (DUT) to scan larger surface
- Large range of conditions: cooling, positioning, (B-Field)
- Easy to use: well defined/described interface
- Very high precision: <3 µm precision even at smaller energies</p>
- Movable!

Two staged approach

- Demonstrator telescope with analog sensors as soon as possible (available 18 months after start of EUDET)
- Final Telescope with digital sensors, final resolution and high readout rate (available since September 2009).

TELESCOPE INGREDIENTS

EXTREMELY SUCCESSFUL

- Sensors: Mimosa26 with 18.4 um pitch, thinned to 50um
- Readout system: VME based (EUDET version)

- EUDAQ: DAQ software concept to easily interlink many readout systems running synchronous
- EUTelescope: software to analyse the data on short time scale

- EUDET telescope is being used by many user groups at DESY and CERN since spring 2007
- Upgrade of system planned within AIDA (more sensor technologies)
- Open to every body !!

TELESCOPE COPIES

- From relative early on, we were discussing the possibility to copy the telescope
- Most important feature of EUDET copies: new DAQ hardware -> based on a commercial system (National Instruments PXIe)
- Improves speed (up to 4kHz) and gives possibilities to implement smarter trigger

Telescope production line a la AIRBUS ...

- Enables "easy" copies
 - Bonn copy (ANEMONE)
 - ATLAS copy (ACONITE)
 - DESY test beam (DATURA)
 - **9**
- Goal: to have exactly the same infrastructure at DESY test beam and CERN SPS test beam beams (spring 2012) and other places

ACCESS TO DESY TEST BEAM

- DESY electron test beam is open to the community
- Beam time request relatively informal: request link to be filled out, further contact via e-mail
- Typically longer test beam periods are available, allow (semi-) permanent setups
- In 2013 a special year: SPS shutdown includes all test beam facilities at CERN
- First survey of possible users indicate a very busy year but still some open slots
- For 2013 we will ask early on for possible users

Typical schedule for one beam line ...

SUMMARY

- DESY provides three test beam lines with 1-6GeV/c electrons
- Very simple system, no beam optics, only momentum selection via magnet
- Perfect facility for proof of principle studies, efficiency studies and also resolution studies
- Infrastructure simple and flexible
- In 2013: DESY test beam one of the few facilities available for the community -> expect many users from around the world

For details:

TESTBEAM.DESY.DE

Or contact: testbeam-coor@desy.de

From now on a copy of the EUDET/AIDA telescope will be available to the users: with a bit of lead time it is simple to use and provides high accuracy tracking.

