Direct Dark Matter Search with XENON100 and XENON1t

Manfred Lindner

Astroteilchenphysik in Deutschland: Status und Perspektiven

20-21 September 2012 Zeuthen

Dynamical Evidence for Dark Matter

F. Zwicky 1933
→ proplem with galaxy clusters
→ galaxies →

➔ galaxies have a large DM halo

comparison of simulated and real structures

→ cosmological DM dynamics

Static DM Distribution: Gravitational Lensing

Astroteillchenphysik in D, Zeuthen, Sept.2012

Consistent Evidences for Dark Matter

CMB (WMAP)

42 _____ 40

38

34

- + Galactic rotation curves
- + Galaxy clusters & GR lensing
- + Bullet Cluster
- + Velocity dispersions of galaxies
- + Cosmic microwave background
- + Sky Surveys and Baryon Acoustic Oscillations
- + Type la supernovae distance measurements
- + Big Bang Nucleosynthesis (BBN)
- + Lyman-alpha forest
- + Structure formation

+ ...

Coherent picture of the composition of the Universe: DE + DM + ordinary matter

Is it Particles?

- bullet cluster (1E 0657-56)
 - colliding galaxy clusters
 - = stars, gas, DM ; up to 10⁶ km/h
 - x-rays from normal particle interactions
 - Dark Matter just traverses
 - displacement of visible (baryonic)
 and GR potential → ~8σ

→ large scale evidence: **DM** = particles?

• modified gravity: MOND

- \rightarrow is just a very simple one scale modification of gravity
- \rightarrow fails badly $\leftarrow \rightarrow$ evidence for DM on many scales
- \rightarrow does it imply that any conceivable modified GR fails? \rightarrow NO!
- other modifications of GR ... ? $\leftarrow \rightarrow$ conformal...

Particle Physics and Dark Matter

- Standard Model of particle physics is most likely incomplete

 → Beyond the Standard Model (BSM)
 → particles which are perfect DM candidates
- Allowed interactions of new DM particles: WIMP = Weakly Interacting Massive Particle GIMP = (only)Gravitational Interacting Massive Particle

	WIMP	GIMP	
electromagnetism	-	-	•
strong interactions	-	-	?
weak interactions	X	-	
gravity	X	X	

• Candidates must be stable or long-lived (> age of Universe)

The WIMP Miracle

- WIMPs have masses O(100 GeV)
- miracle: ~ correct abundance:
- 1) Assume a new (heavy) particle χ is initially in thermal equilibrium: \leftrightarrow ff

χχ

 $\begin{array}{c} \chi \chi \\ \chi \chi \end{array} \overrightarrow{\leftarrow} ff \end{array}$

 $\chi\chi \not\equiv$

- 2) Universe cools:
- 3) "freeze out"
 - Amount of DM ~ (x-section)⁻¹
 - Natural x-section $\sim 1/m^2$ \rightarrow abundance fixed by EW scale
- \rightarrow remarkable coincidence: $\Omega_{DM} \sim 0.2$ for $m_{WIMP} \sim 100-1000$ GeV **BSM AND correct abundance point towards WIMPs**

The nature of Dark Matter

Favoured Dark Matter: WIMPs

- Candidates in BSM models ← → hierarchy problem
- WIMP miracle → correct abundance
- MSSM neutralino: Level of fine-tuning $\rightarrow \Delta_{tot}$

Direct Dark Matter Search with XENON100

The XENON Collaboration

University of California Los Angeles Rice University Houston Purdue University Columbia University New York Universidade de Coimbra Subatech Nantes NIKHEF Amsterdam Willhelms Universität Münster J. Gutenberg-Universität Mainz Max-Planck-Institut f. Kernphysik, HD Universität Zürich Laboratori Nazionali del Gran Sasso INFN e Università di Bologna Weizman Institute Rehovot Jiao Tong University Shanghai (Xe100) ~90 scientists from 15 institutions

M. Lindner MPIK

Astroteillchenphysik in D, Zeuthen, Sept.2012

XENON100: Source and Detector

- sun ~ 8.5 kpc from galactic centre
- moves towards Cygnus
 - → "WIMP wind" <v> ~ 220 km/s
 - flux
 - dispersion
 - annual modulation

- LXe target
- avoid backgrounds:
 - → rock, Cu,Pb,PE,H₂O,...
 - \rightarrow veto, fiducialization, ...
 - \rightarrow radiopure materials

The Case for Liquid Xenon

Liquid noble gases (Ar, Xe) are excellent DM target materials

- O(100 GeV) particles; 50% odd isotopes
- high Z=54 → high density
 → good self-shielding → compact

Cost: Xe >> Ar (Xe is rarest stable isotope on Earth $\leftarrow \rightarrow$ depleting ³⁹Ar)

 \rightarrow Xe: low threshold E_{th} = few keV \rightarrow Xe is ~ x5 better per mass

XENON100: A dual Phase TPC

- Discrimination of $e^{-/\gamma}$ and nuclear recoils: (S2/S1)_{n.WIMP} << (S2/S1)_{e.y}
- 3D position sensitivity: drift time →z; PMT pattern → x,y
 → precise fiducial inner volume (avoid outer volume)
- Discrimination of single/multiple scattering

→ background reduction

242 low activity PMTs 1x1" (Hamamatsu R8520, QE>32% @175nm

gamma event localized

Top PMT array

radio-purity → material screening

⁸⁵Kr → dedicated distillation column

²²²Rn emanation → avoid/monitor

+passive shield: water, lead, PE, copper

+ 4.5 KV TPC 16 KV 64 veto PMTs

Astroteillchenphysik in D, Zeuthen, Sept.2012

The TPC at Work

Fiducialization and BG Reduction

Optimization of fiducial volume with Monte Carlo:

- high background rejection efficiency
- large target mass

Calibration and n/y Discrimination

Periodically: LEDs and sources

Position dep. corrections

Cs-137, AmBe inelastic (40 keV), Xe* (164 keV) Kr-83m (planned)

→ agreement better than few %

- Electron Lifetime: Cs-137
- Electron Recoil Band (backgrd.)
- Nuclear Recoil Band (signal): neutrons: AmBe

→ nuclear / electronic recoil →

- \rightarrow definition of WIMP search region
- ➔ Discrimination power: 99.5% at low energies for 50% acceptance

Background

- MC simulations and background in good agreement
- Background very well understood in full energy range

Nuclear Recoil equivalent Energy

S1 \leftarrow > nuclear recoil energy: $E_{NR} = S_1/L_y/L_{eff} \times S_e / S_r$ S₁: in p.e.

 L_y : LY for 122 keV γ in p.e./keV

 S_e/S_r : quenching for 122 keV γ /NR due to drift field

Blind WIMP Analysis

Data below the 10% quantile of the e-recoil band blinded
→ cuts defined by background events outside WIM region

Selection cuts:

Data quality

- only stable detector periods

- ...

Energy cuts Single event selection Consistency NR/ER discrimination Fiducialization:

- events must be in in FV

Unblinding

- Expected background 1.0 + 0.2
- probability for a fluctuation from 1 to 2 events: 26.4%
- No significant excess seen
- → improved WIMP limits

The two events are in good data quality by visual inspection

Position of the two events in the fiducial region with an expected background of 1.0 ± 0.2

The 2012 Result of XENON100

- best limit on spin independent DM: 2 10⁻⁴⁵cm² at 50 GeV/c²
- excludes part of the predicted region for SUSY candidates
- excludes other WIMP solutions above

What XENON100 would see if...

Assume "CoGeNT" (3e-41 cm²)

What XENON100 sees

The Future: XENON1t

Basic Scaling Considerations

surfaces (cryostat, PMTs, ...)volume (impurities)

Better sensitivity → more exposure
 → running time x detector size
 Volume ~r³ ← → Surface ~r²

BUT: More demanding background req.

- 1) cleaner 'surface'
- 2) more fiducialization (or both)
- 3) cleaner Xe

→ requires:

- a) screening of all detector materials
- b) ultra clean Xe→ distillation column
- c) improved online background reductiond) improved background monitoring

²³⁸U, ²³⁵U, ²²⁸Th, ²²⁶Ra, ⁶⁰Co, ²²²Rn, ⁸⁵Kr ...
→ low background expertise from GALLEX, Borexino, KATRIN, Double Chooz, Gerda → ...

The XENON1t Project

- approved for hall B
 a LNGS
- ~ all of funding in place
- construction starts soon
 detector completion until late 2014/2015

Water Cherenkov Muon Veto

Concept:

- Water tank:
- ~10 m high and 9.6 m in diameter
- 84 high QE 8" PMTs Hamamatsu R5912 with water-tight base
- Specular Reflector: foil DF2000MA by 3M

Bologna – Mainz – Torino

Trigger requirements:

- single photoelectron
- 4 fold coincidence
- time window: 300 ns

Trigger efficiency

- > 99.5% for neutrons with muons in WT
- ~ 78% for neutrons with μ 's outside WT

µ-induced neutron background

- 0.01 per year
- ≪ WIMP signal

Cryostat

Baseline design

- Ti grade 1 double-walled cryostat
- UHV compatible, low outgas rate
- Heat load < 50 W
- Immersed in water shield
- Buoyancy load
- LNGS seismic environment
- Safety review currently ongoing

Astroteillchenphysik in D, Zeuthen, Sept.2012

PMTs

- 2 × 121 3" PMTs by Hamamatsu
- QE: 30% min., >35% achieved
- Ongoing screening program to further reduce radioactivity

QUPID

3 inch

(64mm/71mm Φ)

R11410

3 inch

(64mm/77.5 mm φ)

M. Lindner MPIK

Xenon Storage

Krypton Removal

- Cryogenic distillation
- Reduce ppb Kr traces in Xe gas to ppt
- proven technique, achieved (19 +- 1) ppt in XENON100

Design Parameters for XENON1T

- through-put: 3 kg/hr
- factor of 10⁴-10⁵ separation condensor
- final Kr/Xe < 1 ppt

99.563

M. Lindner MPIK

Münster

10.756 yr

Q_e = 687.0 keV

85 36 Kr

Xenon Purification & Rn-Removal

- ½ inch gas lines, VCR connections
- Orbitally welded
- Pneumatic valves
- SAES PS4-MT50 getter
- QDrive and KNF pumps
- Dedicated monitors for ppb-level impurities (H₂O, O₂, Kr)

Xe purification system

Münster (Xe purification) -MPIK (Rn column)

XENON1T Demonstrator

- XENON purification and heat exchange at 100 slpm
- Verification of cooling concept
- · Cathode HV tests: grid+feed-through goal: -100 kV
- Electron lifetime demonstrated. Next: 1 m drift

Columbia - Rice - UCLA

Material Screening

- Gamma-ray screening with sensitivity ~10 µBq/kg with GeMPIs and Gator, located at LNGS
- Gas counting systems, located at LNGS and MPIK, for ²²²Rn measurements at few atoms sensitivity
- ICPMS @ LNGS, UCLA Inductively coupled plasma mass spectrometry
- Neutron activation analysis @ PSI, Mainz

established numbers: Nylon (Borexino) < 1µBq/m² Copper (Gerda): 2µBq/m² Stainless steel (Borexino): 5µBq/m² Titanium (preliminary): (100 + 30) µBq/m²

MPIK - Zurich

Krypton Analysis

- Kr measurements with gas chromatography plus Rare Gas Mass Spectroscopy RGMS
 - →measurement of ^{nat}Kr to ppt level
 - →extrapolation to ⁸⁵Kr from atmospheric abundance
 - →gas chromatography: Xe separation
 - →demonstrated for XENON100
- ⁸⁴Kr measurement with atomic trap ATTA
 →measurement of ⁸⁴Kr to ppt level
 - →extrapolation to ⁸⁵Kr from atmospheric abundance
 - →Atom trap operational and efficient for Ar*
 - →First Kr/Xe measurements for XENON100 by Fall 2012

MPIK (RGMS) – Columbia (ATTA)

⁸⁵Kr Analytics @ppt level

- Detector improvements (Münster, ...)
- New measurement technique (MPIK)
 → sensitivity ≤ 1ppt = 1000ppq (He carrier gas with ≤ 1ppq He/Xe ~1000)

Xenon Inventory

2.5 tons of HP Xe procured by Coll. All gas with <1 ppm O2 equivalent impurities and < 10 ppb Kr/Xe Purity level of each Xe bottle validated with dedicated measurements at MPIK Gas cylinders stored underground to minimize activation

The larger Context

WIMP Synergies

- SM particles must interact with WIMP DM →
- colliders
- early Universe & indirect
- scattering on target \rightarrow direct

- synergetic results:
- direct detection= least ambiguous
- least ambiguous
- WIMP-like particle @LHC
- astronomy/cosmology

exciting times ahead!

DARWIN Dark Matter WIMP Search with Noble Liquids

R&D and design study for a next-generation noble liquid facility in Europe

3rd darwin meeting, Nikhef, Amsterdam, September 2011

25 groups from ArDM, DarkSide, WARP, XENON Europe: UZH, INFN, ETHZ, Subatech, Mainz, MPIK, Münster, Nikhef, KIT, TU Dresden, Israel: WIS, USA: Columbia, Princeton, UCLA, Arizona SU

similar effort in the US: MAX

Summary

- WIMPs are the best motivated Dark Matter candidate
- XENON100 cuts already into typical parameter space
 an emerging signal would not be surprising
 - → continue operation...
- Massive R&D effort for XENON1t
- Construction of XENON1t at LNGS will start soon
 - \rightarrow moving fast \rightarrow completion end of 2014/2015
 - → covers large fraction of the natural WIMP space
 - ➔ good potential
 - → timely funding

• Beyond that: DARWIN for WIMPs and more...