

Christopher Wiebusch RWTH Aachen Workshop Astroteilchenphysik in Deutschland DESY Zeuthen, 20. September 2012

1

Neutrinos as messenger particles from the Universe

Neutrinos are ideal messenger particles: neutral stable unabsorbed
Measurement: Direction, Energy, Time
➤ Unambiguous tracers of hadronic sources
➤ Need large detectors on the km³ scale

The IceCube Neutrino Observatory

Digital Optical Module (DOM) 10" PMT & local DAQ

http://icecube.wisc.edu

Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

IceCube: 39 institutions 11 countries ~260 scientist Germany: 9 institutions, ~80 authors (30%)

German groups cover the full science spectrum and with leadership in several fields

ICECUBE

Highest energy event (~200TeV) from Diffuse v_{μ} Analysis IC59

A_{eff} includes neutrino cross-section, absorption in Earth and detection efficiency

Detector Performance

Point source search versus Diffuse search

Single source flux

$$\phi_1(E \mid L, z) = \frac{\epsilon_v \cdot L \cdot E^{-\gamma}}{4\pi d_L(z)^2 \cdot (z+1)^{\gamma-1}}$$

Cummulative flux from all sources

$$\phi_{\text{diffuse}}(E) = \int \phi_1(E \mid L, z) \frac{d^2 n(L, z)}{dz dL} dz dL d\Omega$$

Luminosity density function know for astrophysical -> Integration easy

Conclusions

- Diffuse searches are more promising for abundant extra-galactic objects like AGN
- Exception: (transient) rare, bright distant sources like GRB
- Exception: Galactic point sources
- A detailed look reveals more exceptions from this simplified argumentation

Argument worked out by Marek Kowalski (2006), see also Paolo Lipari ,arXiv:astro-ph/0605535v1

Science Results

- 1. Diffuse Searches
 - 1. Diffuse search for high energy muon neutrinos (new)
 - 2. Diffuse search for cascade events (newer)
 - 3. Extremely high energy events (new)
 - 4. first observation of atmosperic $\nu_{\rm e}$
- 2. Point sources
 - 1. GRB fireball model (WB) seriously challenged
 - 2. IC-40+59+79 point source result (newer)
- 3. Cosmic rays
 - 1. Spectrum, composition (\Rightarrow talk by A.Haungs)
 - 2. Anisotropy of cosmic ray (new)
 - 3. R&D Radio (\Rightarrow talk by J.Rautenberg)
- 4. Particle Physics
 - 1. Dark matter (\Rightarrow talk by C.Rott)
 - 2. Atmospheric neutrino oscillations (new)
 - 3. Magnetic Monopoles (newer)

Last ATP Meeting (Feb 2010)

- No Diffuse analysis yet
- No point source signal with IC 22, initial IC-40 analysis

Seach for diffuse fluxes of v_{μ}

Signature: energy and angular distribution

Global fit of both distributions allows to improve the sensitivity by 30% and to constrain systematic uncertainties included as nuisance paramenters in the fit Systematic uncertainties:

- Detector: DOM sensitivity, Ice properties
- Model Atm. flux norm., spectr. index, π/K ratio,...

Final fit result of diffuse ν_{μ} in IC-59

Final sample:

- 21943 v_{μ} events
- 99.85% purity

Less than

- < 150 prompt atm v_{μ}
- < 40 astrophysical \dot{v}_{μ}
- < 30 atm µ background

IC59 detector

May 2009 - May 2010

Best fit

- nuisance parameters in reasonable range
- No prompt component
- Astrophysical E⁻² flux: $E^2\phi = 0.3 * 10^{-8} \text{ GeV}^{-1}\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$ 1.8 σ excess at high energy ... not significant

 $\begin{array}{l} Astrophysical \ v_{\mu}:\\ E^{2}\varphi \ \leq 1.4 \ ^{*} \ 10^{\text{-8}} \ GeV^{\text{-1}}cm^{\text{-2}}s^{\text{-1}}sr^{\text{-1}}\\ Prompt \ v_{\mu}:\\ \varphi \leq 2.3 \ ^{*} \ Enberg \ et \ al.\\ (with \ H3a \ CR \ model) \end{array}$

Upper limit at the Waxman-Bahcall bound

Main contributions: RWTH Aachen

Diffuse: Contained Cascade-like events

High energy (>100TeV)

3 events observed, (+1 burn sample) Preliminary BG expectation: 0.3

 \Rightarrow 1.6 sigma excess (incl. uncert.) **Not significant**!

 \Rightarrow Energy 14

Extreme high energy analysis in IceCube-86

Zeitskala

2

Data

Expected event numbers: Atms. Background (conv. $v + \mu$) 0.06 Prompt atms. v (Enberg et al. + knee) 0.13 Prompt (IC59 upper limit) 0.30 Astrophysical (IC59 best fit) 1.7 0.3 x 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ Astrophysical (IC59 limit) 9.1 1.4 x 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ GZK (various models) 0 – 4

- PeV-events detected at the low-energy threshold of the IC86 EHE analysis!
- > Not significant: 2.9σ (conv.) 2.1σ (incl. prompt)
- Consistent with IC-59 diffuse astrophysical fits
- Investigations ongoing

First observation of low energy cascades with DeepCore

 \Rightarrow First (statistical) detection of v_e Cascades \Rightarrow Demonstration of IceCube veto concept

Search for Neutrinos from Gamma Ray Bursts

1. Model-dependent search

- Time window derived from Gamma T90
- Energy spectrum and flux expectation from individual Burst's observational data
- 2. Model independent search
 - Likelihood analysis with variable Time window (10s - 24h)
 - no specific spectrum assumed

GRB search catalog from GCN satellite information (z.B. Fermi GBM, SWIFT)

Sum of Individual Spectra (Analysis 1.)

No neutrino in coincidence with GRB

2008-9 (40-string) data: 117 GRBs in northern sky

2009-10 (59-string) data: 98 GRBs in northern sky another 85 GRBs in southern sky also analyzed

Observed 0 events

Model prediction: 8.4 events (Guetta et al. excluded at > 3 σ (upper limit \approx 2.3 events)

 \Rightarrow fireball model of GRB as sources of UHECR are seriously challenged

• No spot with increasing significance with time

Point source result galactic sources (IC-40+59)

- About 1 order of magnitude improvement w.r. to IC22,
- IC40+IC59 achives the full IC86 sensistivity
- strong improvement in Southern hemisphere

Measurement of neutrino oscillations physics

Analysis principle:

Compare measured zenith-energy distribution with expectation

Global fit including systematic uncertainties

- high energy >100GeV (no oscillation effects)
- low energy <100GeV (with oscillation effects)

See posters @ this meeting See Pingu/Orca talk by A.Kappes

Obervation of atmopheric neutrino oscillations

Initial analysis of zenith distributions:

No oscillation case ruled out by 5.8σ

In work:

- \Rightarrow detailed parameter estimation and 2-dim fits next steps:
- Competitive or better estimation of Δm_{31} and ϑ_{23}
- appearance of v_{τ} (exp. 30k/a triggered)
- lower energy threshold (PINGU) -> Talk by A.Kappes

IceCube has been succesfully converted to a 4π Cosmic Ray Observatory

- Cosmic ray spectrum, arXiv:1202.3039 [astro-ph.HE]
- Initial composition results, arXiv:1207.3455 [astro-ph.HE]
- First steps toward radio detection of air showers (RASTA)
- Precision measurement of the cosmic ray anisotropy

 \Rightarrow See talk by Andreas Haungs on Cosmic rays und Julian Rautenberg on Radio detection

$4 \cdot 10^9$ events <E> \approx 20TeV

- Good match with northern hemisphere observations
- no compton-getting like dipole
- IceCube is an ideal detector for this: Flat overburden, high statistics, precisely known exposure

Anisotropy is energy dependent (40TeV-10PeV)

- Anisotropy changes with higher energy
- Strength seems to increase at high energy
- Probing and challenging CR ray source and propagation models

Observed Anisotropy is confirmed by IceTop and AMANDA

- IceTop confirms high energy anisotropy with > 5 sigma
- AMANDA confirms low energy anisotropy (result stable > 1decade)

Exotic physics: relativistic magnetic monopoles

Parker

MACRO

0.95

First Results from slow magnetic monopole searches

Search for slow monopoles by subsequent proton decays (Rubakov-Callan effect) New SlowParticleTrigger operating since 2011

Flux limits @ 10⁻¹⁸cm⁻²s⁻¹sr⁻¹

Contribution by RWTH Aachen & DESY Zeuthen

Supernova detection

Large Rate of MeV neutrino interactions in the Gton volume leads to a collective increase of single count rates

- very stable data, small seasonal effect
- 🕑 > 98% uptime
- > 99 % of supernovae in our galaxy covered, even from light progenitors

Innovation made in Germany

Precise modelling of ice layers substantially improves angular resolution \rightarrow reach < 0.3° at high energies

Many R&D projects in Germany: SPATS/Acoustic neutrino detection RASTA: radio detection of air showers Rautenberg DeepCore / Pingu -> Alexander Kappes

Point source analysis of the moon shadow in cosmic ray muons

 \Rightarrow Detected source/sink wit 14 σ

 \Rightarrow Pointing accurate to 0.1° \Rightarrow Assumed point spread function correct

Innovations made in Germany part 2

PROPOSAL: PRopagator with **O**ptimal **P**recision and **O**ptimized **S**peed for **A**ll **L**eptons, Successor of MMC (Muon Monte Carlo) written in C++

Innovations made in Germany part 3

• Optical & X-ray Follow up (Bonn)

- TeV Blazars Target of opportunity (DESY)
- Supernova early warning: participation in SNEWS (Mainz)

ICECUBE

Summary & Conclusions

IceCube construction is completed.
 Data-taking with >98% efficiency

- Multi-pupose Experiment with important new results
 - Diffuse searches: high energy excess in several analyses (not significant)
 - First observation of atmospheric electron neutrinos
 - Observation of atmospheric neutrino oscillations
 - Point source searches: GRB models have to be revised
 - IC-40+59+79: No (galactic) point sources yet
 - Cosmic ray: Precision measurement of anisotropy
 - Magnetic monopoles: >1 order improved limit (Macro)
- Significant contributions by German groups
- More exciting results still to come (soon)

German Institutions

Arbeitsbereiche	AA	BO	BN	DESY	DO	HU	ΜZ	TU	WU	EN
Punktquellen und transiente	Х		Х	Х		Х		х		
Phänomene										
Quellen dunkler Materie	х						х		х	
nicht lokalisierte ν_{μ} -Strahlung	х				х					
ν_e 's & neutrale Ströme			х	Х						
kosmische Strahlung & atm. ν 's, μ 's	х	х		Х		х	х	х	х	
Supernova Suche							х			
Suche nach exotische Teilchen	х			х					х	
neue Technologien: RASTA	Х		Х						х	
neue Technologien: Akustik	х								х	
neue Technologien: PINGU			х				х	х		х
Rekonstruktions- & Simulations-	х		х			х	х			
verfahren										
DAQ, Trigger, Filter, Monitoring	х		х			х	х	х		
Simulations- & Datenmanagement	х	х		х	х			х	х	
Phänomenologie		х			Х					

Analysis coordinators:

M.Ackermann, E.Resconi

Workgroup coordinators:

Muons : A.Gross, P.Berghaus, D.Boersma

Exotics: K.Helbing

Cascades: M.Kowalski

Supernova: L.Köpke

Cosmic Ray :T. Waldenmeier

Reconstruction: D.Boersma

RASTA: S.Böser

Acoustic neutrino detection: K.Laihem & T.Karg

Run Coordination: S.Böser

Excecutive board:

C. Spiering, L. Köpke bzw. C. Wiebusch, Publication board:

H.Kolanoski, J.Tjus, A. Kappes, E. Resconi Speakers board: K. Helbing & E. Resconi

- ~20 publications/a,
- ~30 conference talks/a
- ~ 5-10 PhD theses/a,
- ~20-30 Diplom/Master theses/a,

• ~20-30 Bachelor theses/a