Latest Public Results for SUSY Searches with the CMS Experiment

LHC Physics Discussion

Altan CAKIR CMS-SUSY DESY, 14 May 2012

CMS Supersymmetry Searches

Explore previously inaccessible phase space unlocked with 7 TeV pp collisions at the LHC

Look for deviations from Standard Model expectations
 → can make inferences about SUSY and other BSM physics

The Intensity Frontier:

 Integrated luminosity dictates how much phase space we can explore – trigger-rate limitations lead to selected phase-space trade-offs

Anali CANIK | Latest Fublic Results for SUSY Searches with the CMS Experiment | 14 May 2012 | Page 2

7 TeV LHC Phase Space @ 5 fb⁻¹

- Production of 3rd generation super-partners can result in final states with tops and b-jets
- Sparticles decaying to W/Z/ γ /leptons

 Heavy sparticles decaying to SM particles → large visible momenta

 R-parity conservation → large missing momenta

 Cascading decays through SUSY and SM spectrum can lead to high object multiplicities

Resonances, kinematic edges, mass sensitive variables...

Searching for general excesses

- Nearby regions of phase space are often necessary to contextualize our observations in signal sensitive regions – sidebands, control regions, ...
 - Many different ways to constrain our SM expectations:
 - sidebands in kinematic variables
 - inversion/loosening of object ID requirements
 - exploiting symmetries of the SM [ex. γ +jets \rightarrow Z+jets]
 - control samples of leptons/b+jets/photons and even particular kinematic configurations

7 TeV LHC

SUSY searches begin at the NC (see prev. pic): bosons, tops and Onia SM candles

Used to: select control samples of leptons, photons, b-jets, ... calibrate/measure object reconstruction performance, fake-rates, energy scales validate our understanding of the SM

CMS SUSY @ 5 fb⁻¹ 7 TeV LHC

Interpretation of Searches for Supersymmetry with SMS – SUSY-12

Hadronic Razor + MET – SUSY-12-005

Single Lepton+ b + MET - SUSY-11-028

ultilepton Searches- SUSY-11-013/ EXO-11-045

Multi-Lepton Search

Selection

 Look for deviations from SM in final states with 3 or 4 isolated leptons (e, μ, τ_h)

- Look in a 'matrix' of phase-space:
 - low vs. high H_T
 - low vs. high ME_T
 - presence of opposite-sign (OS) same flavor (SF) lepton pairs (DY)
 - OSSF pairs in / out Z mass window

52 different regions

CMS-SUS-11-013 CMS-EXO-11-045

Backgrounds

 SM sources of 3 or 4 prompt, isolated leptons:

 $t\bar{t}, WZ, ZZ, t\bar{t}Z, t\bar{t}W$

- Contribution predicted from simulation – control region validations
- Z+jets with lepton(s) from jet(s)
 - rate of reconstructed leptons coming from jets inferred from data

 internal and external photon conversions yield leptons – estimate rate from data

Multi-Lepton Search

Asymmetric Conversions

Multi-Lepton Search:

900

Results

Single lepton, b-jets and Missing Transverse Energy

CMS-SUSY-11-028

Selection:

- Event selection based on 1 lepton + MET search with few changes to optimize for b-rich SUSY models.
- Hadronic activity:

$$H_T = \sum_{jets} p_t > 375 \, GeV$$

- Four Jets (ak5PF) each with E_T> 40 GeV
- **B-tags***: 0,1,2,3 or 4 more (TCHEM)
- Exactly **one isolated electron** and **muon** with $P_T > 20$ GeV
- **MET** > 60 GeV

* CMS Collaboration, "Performance of the b-jet identification in CMS", CMS-PAS-BTV-11-001

Single lepton, b-jets and Missing Transverse Energy

Background Estimation (Factorization Method)

Hypothesis: H_T and Y_{MET} are not strongly correlated

Results

Inclusive final state search: Razor Analysis

Inclusive Razor

background functionally extrapolated to signal region – Exclusively a kinematic extrapolation – not object based

Inclusive Razor: Results

Interpretation of Searches for Supersymmetry with SMS

Figure 1: Diagrams of the hadronic models: gluino pair production (T1,left) and squark antisquark production (T2,right).

Figure 2: Diagrams of the heavy flavor models: T1bbbb (left), T1tttt (right).

	prod.		
name	mode	decay	visibility
T1	ĨĨ	$\widetilde{g} ightarrow qq \widetilde{\chi}^0$	hadronic
T2	qq	$\widetilde{q} ightarrow q \widetilde{\chi}^0$	hadronic
T5zz	$\widetilde{g}\widetilde{g}$	$\widetilde{g} ightarrow qq Z \widetilde{\chi}^0$	hadronic
			di-leptons
T3w	ĨĨ	$\widetilde{g} ightarrow qq \widetilde{\chi}^0$	single lepton
		$\widetilde{g} ightarrow qq \widetilde{\chi}^{\pm}$, $\widetilde{\chi}^{\pm} ightarrow W^{\pm} \widetilde{\chi}^{0}$	
T5lnu	ĨĨ	$\widetilde{g} \to qq \widetilde{\chi}^{\pm} \widetilde{\chi}^{\pm} \to l \nu \widetilde{\chi}^0$	di-leptons
T3lh	$\widetilde{g}\widetilde{g}$	$\widetilde{g} ightarrow qq \widetilde{\chi}^0$	di-leptons
		$\widetilde{g} \rightarrow qqll \widetilde{\chi}^0$	
T1bbbb	ĨĨ	$\widetilde{g} ightarrow bb \widetilde{\chi}^0$	hadronic
T1tttt	ĨĨ	$\widetilde{g} \rightarrow tt \widetilde{\chi}^0$	hadronic
			di-leptons(b)
TChiSlepSlep	$\widetilde{\chi}^{\pm}\widetilde{\chi}_{2}^{0}$	${\widetilde \chi}^0_2 o l {\widetilde l}$, ${\widetilde l} o l {\widetilde \chi}^0$	multi-leptons
	_	$\widetilde{\chi}^{\pm} ightarrow u ilde{l}$, $ ilde{l} ightarrow l \widetilde{\chi}^{0}$	_
TChiwz	$\widetilde{\chi}^{\pm}\widetilde{\chi}_{2}^{0}$	$\widetilde{\chi}^{\pm} o W^{\pm} \widetilde{\chi}^{0}$, $\widetilde{\chi}^{0}_{2} o Z \widetilde{\chi}^{0}$	multi-leptons
TChizz	$\widetilde{\chi}_2^0 \widetilde{\chi}_3^{\overline{0}}$	$\widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{3}^{0} \to Z \widetilde{\chi}^{0}$	multi-leptons

Figure 3: Diagrams of the dilepton models: T3lh (left), T5lnu (right).

Figure 4: Diagrams of T3w (left), T5zz (right).

Altan CAKIR | Latest Public Results for SUSY Searches with the CMS Experiment | 14 May 2012 | Page 19

Summary

- ~5 fb⁻¹ of data analyzed by the CMS Collaboration
 - Unfortunately no evidence of Supersymmetry
 - Extended previously explored range of model parameters
 - Results are presented in the cMSSM and SMS models
- Prospects for 2012: expected 5 (10) fb⁻¹ data at 8 TeV center of mass energy up to end of this year.

