Electron trigger efficiency with Z → e⁺e⁻

for: Stefan Mättig, Johannes Haller

Outline:

- Motivation and Introduction
- · Selection
- · Results
- Outlook

Motivation

Low energy electrons are interesting for many purposes:

- o Standard Model Z → e⁺e⁻
- o Standard Model W → ev
- o Standard Model tt → Wb
- o Higgs \rightarrow Z Z, where at least one Z \rightarrow e⁺e⁻
- o SUSY
- o And much more...

Need to trigger those events efficiently...

AND DETERMINE THIS EFFICIENCY FROM DATA!!!

The ATLAS Trigger

The Electromagnetic Trigger

Level 1:

- o Coarse scan for local E maxima.
- o EM ring isolation.
- o Hadronic ring+core isolation.

Cells in Layer 3

- o Full granularity determination of energy.
- o Hadronic isolation.
- o Shower shapes in first and second sampling.
- o Cluster-track matching.

Introduction to the Tag&Probe method

To use real data, you need:

- o A clean sample of events where you know you have an electron.
- o A large sample of these events.
- o Obvious choice: $Z \rightarrow e^+e^-$

- o Reconstruct offline $Z \rightarrow e^+e^-$ good events.
- Require that one electron passed all three trigger levels.
- o Check if the other electron passes the three triggers...

Offline event selection

Selection:

o Use official cut-based offline electron identification for both electrons: IsEM TIGHT

Individual jet –rejection factor ~10⁵!

- o Remove crack region in the EM calorimeter: offline |eta| < 1.37 || 1.52 < |eta| < 2.4.
- o Electron $p_T > 15$ GeV.
- o Z reconstruction e⁺e⁻ invariant mass:

$$70 \text{ GeV} < M_{ee} < 110 \text{ GeV}$$

o Tag electron passes all three trigger levels.

Goal and problems

Produce efficiency plot with this method for the performance chapter of the detector paper!

- o Requirement to use release 13!!!
 - o Very new release with a lot of changes in software/data format.
- o The tool to produce these plots in release 12 were not fully available, and are still not (EventView): Write own tools from scratch...

Check the standard isolated single electron trigger e25i:

- o Intended for running at nominal luminosity of 10³³.
- o Isolation requirements against hadronic activity and surrounding EM activity.
- o Compare Tag&Probe with Monte Carlo Truth efficiencies.

First Check: Compare with release 12

There was a bug in the encap tracking at Level 2:

- o Known as the "space point bug".
- o This bug was fixed in release 13.
- o No efficiency problem any more in the endcaps in release 13!!!

Resulting efficiency plots: Detector Paper!

Spotted problem:

o Event Filter efficiency drops of at high p_T!

Efficiency(Tag&Probe) – Efficiency(Truth)

Efficiency(Truth)

Resulting efficiency plots

Check the Event Filter cuts:

- o The cut on the ratio of the transverse energy as measured by the calorimeter to the transverse momentum as measured by the tracking produces this effect!
- o Bremsstrahlung...

Remove E_T/p_T cut:

There are now more trigger items

For the 1031 luminosity running:

o e20: Rather low threshold without a Level 1 isolation requirement.

For the 1033 luminosity running:

o e22i: A newly optimized isolated single electron trigger intended to replace e25i.

We took a first look at those as well...

e20 trigger item

- o Very high plateau efficiency!
- o No problems spotted...
- Excellent agreement between Tag&Probe and Monte Carlo Truth methodes!

e22i trigger item, tight offline

- Very slow rise of level 2 efficiency with p_T!!!
- o This is a problem!

e22i modified trigger item, tight offline

Check the Level 2 cuts:

o One energy ratio cut from the first sampling is responsible! But this cut is very powerful...

Also, reduce Level 2 p_T threshold by 1 GeV w.r.t. Event Filter threshold!

Level 2 E_T > 19 GeV (instead of 20.1 GeV); ERatio > 0.73 (instead of 0.87 for |eta| < 1.8 and 0.97)

Detector paper plots were done just in time (tour de force)!!!

Found some problems with the selection: Need to optimize with release 13 Monte Carlo. Previos optimizations of the isolated electron triggers are most likely not optimal...

Next target: Produce rates and efficiencies for the high threshold electron trigger for the CSC note (this weekend)!

Eta plots for different trigger items

