

Tau fake rate from data

Sylvie Brunet

Working on that:
Philip Bechtle, David Côté,
Sebastian Johnert & myself

Motivations

Technical motivation: do a quick study (missing so far) to be added in the Tau CSC note

Physics motivation: present a method to evaluate the tau fake rate (by jets) in data

Goal:

We want to evaluate
the fraction of jets
selected by the 2 existing
tau algorithms
(TauRec/Tau1p3p)

Method

Dijet QCD events will be dominant in data...

The idea is to select a sample of very likely QCD jets (eventually in data) and see how many are (wrongly) identified as taus.

Tag and Probe style

We make predictions using MC:

- 2 back to back objects
- One "nice" jet for the tag side (then we are confident that we also have a jet on the other side)
- We use the other side (probe jet) to compute the fake rate

probe jet

Fake Rate =
$$\frac{\text{Nb Probe jets identified as } \tau}{\text{Nb Probe jets}}$$

MC Data Used

- QCD dijets samples (J0-J5) (perform our studies)
- Z to tau tau and W to Tau nu (crosscheck that we will get

(crosscheck that we will get rid of most of the "real" taus)

Dijet(J1, 17-35GeV)	1400000 nb
Dijet(J2, 35-70GeV)	93300 nb
Dijet(J3, 70-140GeV)	5900 nb
Dijet(J4, 140-280GeV)	308 nb
Dijet(J5, 280-560GeV)	12 nb
Z to tau tau	1.6 nb
W to tau nu	17.3 nb

2 independent setups:

- 12-series ntuples coming from the SUSYView production
- 13-series ntuples (CBNT) coming from private productions (Freiburg/Elzbieta)
 Very nice to crosscheck each other!

Selections

- 2 back to back jets (Cone4Jets)
 - $|\eta| <= 2.5$ for each jet
 - $\cdot |\Delta \varphi| = \pi + / 0.30$
 - pt>=15 GeV for each jet
 - pt balance between 2 jets $\rightarrow \Delta pt < ptmax/2$

- @ 1 "nice" TAG jet:
 - nTrk (with pt > 1 GeV) in Jet >= 4 + 1 trk / 50GeV slice (this removes most of the real taus)
- PROBE jet:
 - no further selections (to keep whole spectrum)
 - for Tau1p3p: can ask track (with pt min or not) in jet
 - check if identified as a tau (TauRec/Tau1p3p)

Example of Selections

Example of Selections

• pt min (15 GeV) and pt balance between 2 jets (Δ pt < ptmax/2)

Then...

- Nice di-jet sample (unfortunately not a lot of statistics)
- Look for probe jets identified as tau
- Fake rate as a function of n and pt of the probe jet

Fake Rate =
$$\frac{\text{Nb Probe jets identified as } \tau}{\text{Nb Probe jets}}$$

Results

Fake Rate in bins of pT and n

業

Results

Fake Rate in bins of pT

Results Fake

Fake Rate in bins of pT Expected Stats in DATA

Numbers for MC stats.

bin 1 (0-15) No events (our selection)

bin 2 (15,40) =
$$0.023 + - 0.003$$

bin 3 (40,80) =
$$0.052 + -0.022$$

$$bin 4 (80,120) = 0.005 + /- 0.002$$

bin 5
$$(120,160) = 0.002 +/- 0.002$$

bin 6
$$(160,200) = 0.82 + / -0.18$$

bin 7 (200,400) = 0.000085 + -0.000100

- Not enough MC stats!! (+scaling factors are sometimes huge) so numbers not sooo meaningful.
- Weight and the second terms of the second t
- ·Will not be a problem in data
- •proof of principle is there.

Results

from 12-release setup (SUSYView production)

Summary/Conclusions

- We have a method to evaluate the tau fake rate (from jets) in data. Targeted for the tau CSC note.
- We use a "tag and probe" approach. The tags are there to select clean dijet events, we compute the fake rates with the probe jet.
- We have 2 independent setups, very useful to investigate problems and crosscheck results
- We've produced results for both TauRec and Tau1p3p
- Tau Conveners happy with our studies
- Main item on to-do list: write text and produce final plots for CSC note

Backup

What we have learned so far

- Bad news: We select some real taus in the Z to tau tau and W to tau nu samples (can increase the nTrk requirement on the tag side if we want to further kill these events).
- Good News: However, the cross-section is so small compared to the dijets that it will be negligible (Nevertheless, we want to put a number on this "negligible")

Some expected cross-sections:

Dijet(J1, 17-35GeV)	1.4 mb
Dijet(J2, 35-70GeV)	93.3 um
Dijet(J3, 70-140GeV)	5.9 um
Z to tau tau	1.6 nb
W to tau nu	17.3 nb

One of the remaining puzzles: pt distribution

In Sylvie's ntuples, seems to have some garbage jets remaining... Need more clean-up. Not seen in Sebastian's ntuples...

- Related to overlap removal/isolation?
- track quality cuts for the tag side?
- · other cuts made in SUSYView?

Currently
Investigating
that...

J3, pt, den., Sebastian

J3, pt, den., Sylvie

Sylvie Brunet, Tau fake rate from data, DESY-ATLAS Meeting, 06/12/2007

What we have learned so far

Some interesting plots...

Sylvie Brunet, Tau fake rate from data, DESY-ATLAS Meeting, 06/12/2007