# CMS pixel resolution and efficiency in the DESY test beam telescope

Armin Burgmeier, Luigi Calligaris, Thomas Eichhorn, Shiraz Habib, Hanno Perrey, Alexey Petrukhin, Daniel Pitzl DESY CMS Phase I pixel upgrade, 18.5.2012



- setup
- partial analysis:
  - threshold scan
  - ▶ tilt scan
  - bias scan

#### Goals for the April 2012 beam test

- Take reference data with the present Pixel ROC PSI46 v2.3
  - large statistics
- measure efficiency and resolution:
  - ► vs clock delay (0..25 ns)

not done, clock jumping

► vs bias voltage (up to 150 V)

done

vs threshold (soft to hard, cutting small pulses)

done

vs tilt angle (0 to 30 deg, mimic Lorentz angle)

done

- Procedure established:
  - operate 2 single chip modules
  - clock synchronized with the DESY II beam
  - parallel DAQ with 2 PSI46 test boards and the EUDET telescope
  - analyze with modified/extended EUTelescope software
- 2<sup>nd</sup> beam test with new PSI46xdb in summer

#### **PSI46 pixel ROC**



vary in beam test

#### planned programme

- Defaults: DUT at 20°, bias -150 V, softest threshold, optimal delays
- Optimize rate in test beam by adjusting position ½ day
- Clock delay scan: 0..24 ns, 4 ns steps, finer at edges (~10 runs) ½ day
- Bias voltage scan: -150 to -10 V, 20 V steps (8 runs) ½ day
- DUT tilt scan: 0°, 5°, 10°, 15°, 18°, 20°, 22°, 25°, 30° (9 long runs) 1.5 day
- Threshold scan: VthrComp 97 to 7 step 10 (10 long runs) 1.5 day
- gain calibrations each day
- scan Vana (less power), always re-optimize other DACs 2 days
  - possibly repeat delay and threshold scans
- another chip as DUT 1 day
- repeat problematic runs 1 day
- reserve 1 day + weekends + extension week

#### **EuTelescope software in Marlin**

| step                                                                                                 | output.format | constants        |
|------------------------------------------------------------------------------------------------------|---------------|------------------|
| 0. EUDAQ data taking                                                                                 | native.bin    |                  |
| 1. convert, find hot pixels                                                                          | raw.lcio      | hotpixel.db      |
| 2. clustering                                                                                        | clusters.lcio | offset.db        |
| 3. hits, coarse align                                                                                | hits.lcio     | pre-align.db     |
| 4. Millepede alignment with GBL                                                                      | pede.bin      | align.db         |
| 5a. read CMS, GBL tracks<br>Millepede align                                                          | tracks.lcio   | <b>DUTal.txt</b> |
| 5b. re-run GBL track fit                                                                             | final plots   |                  |
| All steps produce ROOT histograms for monitoring                                                     |               |                  |
| alignment of DUT and REF not yet fully automated                                                     |               | DP               |
| <pre>code: desy-cms010:/data/group/pixel/software data: desy-cms010:/data/group/pixel/testbeam</pre> |               | HP, AB           |





#### Default set up



- Upstream arm 0-1-2:
  - as close as possible to DUT, but allow for tilting (open for insertion)
- DUT = single chip module, tilted by up to 30°,
- Downstream arm 3-4-5:
  - equally spaced between DUT and REF, allow for DUT tilting
- REF = single chip module for timing, as close as possible behind scint
- trigger: 2-fold coincidence (config: TLU AndMask 12)

#### **Data taking**



- Telescope trigger:
  - back pair (2&3) in coincidence,
  - ► 1 kHz at 5.2 GeV with  $10^{10}$  e in DESY,
  - ▶ 650 Hz at 5.6 GeV
- Most runs: 600 s.
- Dips:
  - ► DESY filling PETRA every 75 s.

## CMS pixel raw data monitoring

#### pixels / event

#### hexal address encoding



empty triggers by design: CMS sensor is smaller than trigger

6 levels perfectly separated

#### CMS pixel occupancy



#### rows = vertical



CMS pixel nicely illuminated Chip 10: all columns functional

#### CMS pixel hit map



- Chip 10:
  - a few dead pixels, mostly at the edges
- Run 1778:
  - ► 174 entries/pixel on average in 600 s

#### Pulse height distribution



- Chip 10 at 20° tilt.
- Gain calibration from Shiraz.
- fiducial cuts:
  - edge pixels avoided.
- Landau ⊗ Gauss:
  - perfect fit,
  - peak position and width OK for 285 μm silicon,
  - Gaussian smearing too large: nonuniformities?

#### Cluster charge



- Chip 10, run 1778, 20° tilt.
- Gain calibration from Shiraz applied
- 1-pixel clusters have less charge:
  - ► threshold losses

#### Cluster charge per column



- Chip 10, 20° tilt
- Gain calibration from Shiraz applied
- Landau fit to each column.
- Observe ±8% gain variation across the chip:
  - ► calibration problem?

#### efficiency measurement



- Downstream track = telescope planes 3+4+5
  - link to hit in timing reference plane (CMS pixel)
- Upstream track = telescope planes 0+1+2
  - ► link to hit in device under test (another CMS pixel single chip module)
- match downstream and upstream track at DUT (scattering material)
- efficiency = (linked hit in DUT) / (telescope track with timing)
  - within fiducial region cuts

#### Efficiency map



#### **Efficiency profiles**

Chip 10, 20°, run 3096





## Efficiency vs time after fiducial cuts in *x* and *y*



2800 s

## EuTelescope software in Marlin

| step                                        | output.format          | constants        |
|---------------------------------------------|------------------------|------------------|
| 0. EUDAQ data taking                        | native.bin             |                  |
| 1. convert, find hot pixels                 | raw.lcio               | hotpixel.db      |
| 2. clustering                               | clusters.lcio          | offset.db        |
| 3. hits, coarse align                       | hits.lcio              | pre-align.db     |
| 4. Millepede alignment with GBL             | pede.bin               | align.db         |
| 5a. read CMS, GBL tracks<br>Millepede align | tracks.lcio            | <b>DUTal.txt</b> |
| 5b. re-run GBL track fit                    | final plots.pdf        |                  |
| All steps produce ROOT histo                | ograms for monitoring  |                  |
| alignment of DUT and REF n                  | ot yet fully automated |                  |

code: desy-cms010:/data/group/pixel/software data: desy-cms010:/data/group/pixel/testbeam

#### Datura telescope hit resolution





- 5.6 GeV e<sup>+</sup> beam.
- Triplet residuals:
  - 3 upstream planes,
  - hits in plane 0 and 2 form vector,
  - residual to hit in middle plane 1,

$$\quad \boldsymbol{\sigma}_{_{\mathrm{r}}} = 4.1 \ \mu \mathrm{m} = \sqrt{(3/2)} \ \boldsymbol{\sigma}_{_{\mathrm{i}}}$$

$$\sigma_{i} = 3.3 \ \mu m.$$

#### CMS pixel row resolution

run 3107, 5.6 GeV, 20° tilt





Vertical = rows

• CMS pixel =  $100 \mu m$ .

#### Residual:

- $\sigma = 8.2 \, \mu m$ ,
- telescope extrapolation:4.5 μm,
- **CMS resolution:** 7 μm.

run 3107, 5.6 GeV, 20° tilt



#### cleaning cuts:

- cluster one pixel away from edges,
- ▶  $|\Delta x|$  < 0.15 mm,
- only 1- and 2-row
   clusters (against δ-rays)
- cluster charge > 18 ke (against wrong timing),
- ► | track angle | < 2 mrad (against scattering).

#### Result:

► less tails, more Gaussian

#### Threshold scan



Threshold from soft to hard: loose small pulses
Simulates reduced charge collection
Study cluster size, resolution, efficiency

## CMS pixel row resolution vs threshold





- Chip 10, 20° tilt
- 5.6 GeV, telescope extrapolation uncertainty subtracted.
- lower threshold:
  - charge sharing better exploited
  - better resolution

row resolution [μm]

## CMS pixel ROC efficiency vs threshold





- Chip 10, 20° tilt
- top efficiency 99.85%
- efficiency stays above 99% for thresholds below 9 ke,
  - rapid drop above 9 ke.

#### Cluster size and charge vs. threshold

Chip 10, 20° tilt



#### cluster size vs impact point and threshold



**10°** run 2330

**15°** run 2328





**25°** run 2325

**30°** run 2326

## charge sharing vs threshold

1-row:  $\eta = 1$ 

 $0^{\circ}$ 

run 2331

**10°** 

run 2330

**15°** 

run 2328

#### $y_{impact} \ mod \ 200 \ \mu m$ : 2 pixels



**25°** run 2325

30°

run 2326

## resolution profile vs threshold





**0°** run 2331







#### CMS pixel row resolution vs tilt angle





- Chip 10, 5.6 GeV, telescope extrapolation uncertainty subtracted.
- row pixels =  $100 \mu m$ .
- Binary:
  - $\sigma = 100 / \sqrt{12} = 29 \, \mu \text{m}$
- Optimal angle 19.5°:
  - $\sigma = 7 \mu m$ .

row resolution [μm]

#### CMS pixel resolution vs tilt angle













#### cluster size vs tilt angle







 $atan(100/285) = 19.3^{\circ}$ 







#### cluster size vs impact point and tilt angle



#### charge sharing: $\eta$



## charge sharing vs tilt angle







#### resolution profile vs tilt angle



D. Pitzl et al.: April 2012 beam test results

# CMS pixel row resolution vs bias voltage





- Chip 10, 5.6 GeV, 20°
  telescope extrapolation
  uncertainty NOT
  subtracted.
- best: 8 um above 100V
- reproducible?
- kink at  $\sim$ 60V: depletion?
  - why does the n-in-n pixel sensor work below full depletion?

# pixel charge

Chip 10, 120 V,  $20^{\circ}$ , Ia 24 mA, trim Vcal 55



lower 'effective' threshold: better timing?

#### Efficiency vs bias voltage



## Cluster charge vs bias voltage



- Chip 10, 5.6 GeV, 20°
- Position of the Landau peak.
- slowly reaching plateau:
  - not a good indicator of full depletion?

## **Summary**

- Beam test of a CMS pixel sensor with the DESY telescope.
- threshold scan:
  - efficiency above 99% for thresholds below 9 ke
  - best resolution 7 μm at 3.3 ke (with 20° tilt)
- drive towards lowest threshold:
  - only reached 3.3 ke (from 3.9)
  - ▶ increasing analog current from 24 to 30 mA does not help
- bias voltage scan:
  - sensor can be operated below full depletion
  - ► why? (it is n-in-n)
- tilt angle scan:
  - Optimal resolution 7 μm at 20° (with 3.3 ke threshold),
  - charge sharing appears almost linear at 20°.

#### **Further studies?**

- Subdivide chip into regions:
- or study per double-column
- or check for even/odd column effect:
  - resolution
  - Landau
  - cluster size
- Simulation:
  - detailed pixel simulation available in CMS
  - port to test beam?



#### **Outlook**

- Expect improvements from the new ROC:
  - lower threshold
  - less 1-row clusters
  - even better resolution
  - better efficiency when sensor charge collection degrades
- Single-chip modules with the new ROC will be prepared at PSI:
  - analog PSI46xdb and/or digital PSI46dig
- Followed to testing in the lab, DAC parameter determination
- New ROC beam test scheduled for mid June mid July

## Things to improve

- Fix clock jumps (how?)
- Common run start/stop: EUDAQ and takeData
- Include REF plane into GBL track fit and Millepede alignment.
- Include DUT and REF into EUTel GEAR file
- Would be nice to have:
  - motor controlled tilting, along 2 axes,
  - active cooling of the ROC: would reduce gain drift,
  - ► TDC in data stream for beam time and clock monitoring.

## Acknowledgements

- Ingrid Gregor, Artem Kravchenko, Igor Rubinskiy (all DESY ATLAS):
  - building the Datura telescope for TB21
- Adam Zuber, Holger Maser (DESY CMS):
  - improved the support frames for the test boards
- Torsten Külper (FH electronics lab):
  - made the trigger and clock adapters for the test board
- Beat Meier (PSI):
  - new test board firmware with external trigger input
- Ulrich Hurdelbrink (machine group):
  - developed the clock generation setup
- Claus Kleinwort (DESY CMS):
  - General Broken Lines code, advice on alignment



#### Mimosa26 ILC pixel chip



- Mimosa26 monolithic active pixel sensors (Strasburg, 2009):
- thinned to 50 μm,
- $18.4 \times 18.4 \ \mu m^2$  pixel size,
- $1152 \times 576 = 663$ k pixels,
- $10.6 \times 21.2 \text{ mm}^2$  active area,
- binary readout,
- integration time  $115 \mu s$ .

# **EuTelescope software**

| step                                                                                                        | data.format                                  | constants    |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|
| <b>0. EUDAQ data taking:</b> 900s                                                                           | <b>native.bin,</b> e.g. 200 MB 500k triggers |              |
| 1. convert, find hot pixels:                                                                                | raw.lcio, e.g. 200 MB                        | hotpixel.db  |
| 70s <b>2. clustering:</b> 240s                                                                              | <b>clusters.lcio,</b> e.g. 400 MB            | offset.db    |
| 3. hits, coarse align:                                                                                      | hits.lcio, e.g. 600 MB                       | pre-align.db |
| 250s  4. Millepede alignment: 12s                                                                           | <b>pede.bin,</b> e.g. 120 MB                 | align.db     |
| 5. track fitting: 270s                                                                                      | <b>tracks.lcio,</b> e.g. 25 MB               |              |
| script submit-all.sh run energy by Armin Burgmeier                                                          |                                              |              |
| All steps produce ROOT histograms for monitoring. Steps 1-5 require a geometry file defining the telescope. |                                              |              |

Parameters are passed from xml files. Code in svnsrv cmspixelupgrade.

## Fitting peaks with Student's t

 $t = (x-x_0)/\sigma = \text{normalized residual.}$ 

$$f(t) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi} \Gamma(\nu/2)} (1 + t^2/\nu)^{-(\nu+1)/2}$$

f(t) is a normalized probability density.  $\Gamma$  function is in PAW, ROOT.



Parameter  $\nu$  interpolates between Gaussian and Breit-Wigner.

#### rms/σ for Student's t



- Generate random numbers according to Student's t for different ν (see W. Hoermann, Computing 81 (2007) 317).
- calculate rms:
  - for all t. (rms diverges for  $\nu = 1$ ).
  - for |t| < 5. (rms stays below 1.62 for all  $\nu \ge 1$ ).
- Asymptotic value  $(rms/\sigma = 1)$  slowly approached.