

Extraction of the effective doping concentration N_{eff} from TCT measurements

Thomas Pöhlsen, Coralie Neubüser

University of Hamburg

Overview

Introduction / Motivation

Transient current technique (TCT)

- Setup
- Model calculation of TCT pulses

TCT pulse analysis and least χ^2 fit

Results

Conclusion

Motivation

10 x higher radiation damage after LHC high luminosity upgrade

⇒ radiation hard material needed

Radiation damage:

Current generation -> Increase of leakage current, noise, heat

Trapping centers -> Charge losses, signal reduction

Change in N_{eff} -> Increase of full depletion voltage, type inversion

signal reduction, impact on resolution?

This talk:

focus on change in effective doping concentration $N_{eff} = N_{donors} - N_{acceptors}$

HPK-campaign, mixed irradiation

HPK-campaign mixed irradiation

with protons and neutrons according to expected ratio between charged and neutral hadrons. So far: 23 MeV protons from Karlsruhe (KIT)

Type inversion in MCz n-type material after 23 MeV proton irradiation observed (not expected). Effect due to the **proton energy**?

 $|N_{\rm eff}|$ may be extracted from CV measurements via **full depletion voltage V_{fd}**.

For non-irradiated diodes: well understood —

 $V_{fd} = |N_{eff}| \cdot \frac{d^2 q_0}{2\varepsilon\varepsilon_0}$ but: only the absolute value |N_{eff}| is accessible

For irradiated diodes **further limitations**:

- depletion behavior unclear (double junction), frequency and temperature dependent
- $\nabla E = \nabla E$ (V) (space charge is voltage dependent)

Transient current technique (TCT)

red laser light pulse:

- 670 nm, 3 μm penetration depth
- FWHM 40 ps
- generates N = ~ 1 million e-h pairs

readout:

- digital oscilloscope (bandwidth 1 GHz, 512 averages)
- 10 x Phillips current amplifier
- also relevant: diode capacitance of ~14 pF for used diodes with d=200 μm

Model calculation

Extraction of physical quantities

Extraction method: least χ^2 fit of model calculation to measured TCT pulse model calculation with $N_0 = Q_0/q_0$ drifting charge carriers at t=0

Least χ^2 -fit results for MCz 200 μ m, after 3.9·10¹⁴ cm⁻² 23GeV protons and 8 min @80°C

TCT current signal

$$\chi^{2} = \sum_{i=1}^{n} \frac{(I^{meas}_{i} - I^{calc}_{i})^{2}}{\sigma_{i}^{2}}$$

$$\sigma_{i} := 0.3 \text{ } \mu\text{A}$$

$$\Rightarrow$$
 least χ^2 = 35

Data points used for least χ^2 fit: n = 35

4 free fit parameters: τ_{eff} , N_{eff} , t_0 , d

 \Rightarrow degrees of freedom: ndf = 31

baseline before pulse:

$$\sigma_i \approx 0.25 \,\mu\text{A}$$

$$V_{fd} = \left| N_{eff} \right| \cdot \frac{d^2 q_0}{2\varepsilon\varepsilon_0} = 158 \, V \, ?$$

χ^2 matrices for MCz 200 μ m after $4\cdot10^{14}$ cm⁻² 23 GeV protons, 8 min @ 80°C

Comparison of N_{eff} for MCz n type

TCT: extracted at 0°C, V=300 V from dE/dx

- non-irradiated
- ◆ 23 MeV, 2.6e14 neg
- ▲ 23 GeV, 3.9e14 neq
- CV, non-irradiated
- ◆ CV, 23 MeV, 2.6e14 neq
- ▲ CV, 23 GeV, 3.9e14 neq

CV: extracted at 0°C, 1 kHz from V_{fd} $\left|N_{eff}\right| = V_{fd} \cdot \frac{2\varepsilon\varepsilon_0}{d^2q_0}$ + arbitrary sign!

Conclusions

N_{eff} could be extracted from TCT current measurement and is found to strongly depend on:

- annealing (1 min to 10 min @ 80 °C -> ΔN_{eff} = 3.5 · 10¹² cm⁻³)
- proton energy (23 GeV vs. 23 MeV)

Differences to |N_{eff}| extracted from CV measurements observed

⇒ open questions:

- Impact of a voltage dependent space charge on CV and TCT interpretation?
 (depletion behaviour unclear, TCAD simulation of double junction and CV?)
- How good is the assumption τ = const for given voltage, i.e. position dependence $\tau(x)$ negligible? (combined edge-TCT / TCT study)
- Systematic impact of electronic circuit? (description improvable?)

Charge Collection Efficiency

Voltage dependence

8@80°C

200 V
$$N_{eff} [10^{12} \text{ cm}^{-3}] = 4$$

300 V
$$N_{eff} [10^{12} \text{ cm}^{-3}] = 5.1 \pm 0.3_{stat} \pm 0.3_{Q0}$$
 (d = 200 μm)

400 V
$$N_{eff} [10^{12} \text{ cm}^{-3}] = 5.7$$
 for d = 200 μ m fixed

6.5 for
$$d = 196 \mu m$$
 free

700 V fit not possible with given electronic circuit & drift model

