Silicon Strip Sensor Simulations

Thomas Eichhorn

Silicon Strip Sensor Simulations Phase II Meeting, 11.5.2012

Simulation software

Synopsys TCAD

- Comercial package for semiconductor simulations
- Framework:
 - > Create 2D or 3D structure (materials, doping, etc) and generate a mesh
 - Select physical models to be used in simulation: temperature, field generation, carrier recombination, trapping (→ radiation damage), carrier lifetime, etc.
 - Include external effects: electric circuit (SPICE), laser illumination, traversing particle...
 - > Specify what kind of simulation: simple I-V, capacitive, or time-dependent
 - > Run simulation: at each mesh-point solve poisson's equation $\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\epsilon_r\epsilon_0} \quad \text{and carrier continuity equations:} \\ \nabla \cdot \vec{J_n} = q \left(R_{\text{eff}} + \frac{\partial n}{\partial t} \right) \\ \nabla \cdot \vec{J_p} = q \left(R_{\text{eff}} + \frac{\partial p}{\partial t} \right)$
 - > Derive physical properties: electric field, current flows, charge distributions, etc.

Simulation group within CMS sensor upgrade WG

- > 4 other institutes: Delhi, Helsinki, Karlsruhe, Pisa
- Task list with simulation activities:
 - Device design
 - > MSSD, MPix, diodes, p-stop/p-spray, deep diffusion, biasing schemes, etc.
 - Charge collection and read-out
 - > Capacitance, 3D-coupling, lorentz angle, etc.
 - Radiation damage
 - > Full defect list, trap models, cluster defects, IV/CV/transient simulations, CCE, E-Fields, double junction, etc.
 - General
 - Comparison of simulation tools and packages
- > First selected task: device design, MSSD capacities

MSSD capacities

MSSD properties:

- 12 strip sensor regions with different pitch and width → interstip capacitance C_{int} should vary
- Scaling factor X for comparison:

X = p / [d + p*f(w/p)] with

$$f(w/p) = -0.00111(w/p)^{-2} + 0.0586(w/p)^{-1} + 0.24 - 0.651(w/p) + 0.355(w/p)^{2}$$

Measurements: total sensor capacity
 C_{tot} = C_{int} + C_{back} is constant for all X →
 try to reproduce in simulations

Sensor	Pitch [µm]	Implant width [µm]	Alu width [µm]	w/p	X
1	120	16	29	0,133	0,31
2	240	34	47	0,142	0,54
3	80	10	23	0,125	0,22
4	70	8,5	21,5	0,121	0,19
5	120	28	41	0,233	0,33
6	240	58	71	0,242	0,6
7	80	18	31	0,225	0,23
8	70	15,5	28,5	0,221	0,2
9	120	40	53	0,333	0,35
10	240	82	95	0,342	0,64
11	80	26	39	0,325	0,24
12	70	22,5	35,5	0,321	0,21

MSSD capacities II

First capactitance calculation

- Device schematic: strip sensor with 4 (or more) strips, measure C_{int} between the 2 center strips
- How should C_{int} be simulated?
- Direct capacitance between 2 AC contacts is < 0,001 pF/cm → far too low!
- Consider further capacities: →
 C_{int} ~ C_{AC} + C_{DC} + C_{DCi-ACj} + C_{ACi-DCj}
- See S. Chatterji et al. in Solid-State Electronics 47 (2003) 1491 – 1499
- This method gives C_{int} values in the magnitude of measurements, but is it physically correct?

MSSD capacities **III**

- > Results with 'added' capacitance network
 - C_{int} and C_{back} show same behaviour as in measurements (decreasing resp. increasing with X)
 - But: C_{tot} = C_{int} + C_{back} is not constant, as C_{int} is too small (off by a factor of 1,8 compared to measurements)

MSSD capacities IV

- Interstrip capacitance towards further neighbours:
 - C_{int} shows decreasing behaviour in X and in neighbour distance as expected
 - But as with C_{int} to direct neighbour, these values are probably too low, although no experimental data for comparison is available

MSSD capacities V

- Is the capacitance simulation generally flawed?
- Step back: go to simpler structures to see where error occurs
 - Simulation of a simple parallel-plate capacitor
 - > Two aluminum strips separated by dielectric (Si or SiO₂, vacuum doesn't work)
 - > Gives correct capacity, combinations of Si and SiO₂ also work (though using only SiO₂ makes the simulation crash, at least 1µm of Si is needed)
 - Diode with pn-junction and doping
 - > Also gives correct result
 - Segment one Al-side to get 'real' strip sensor
 - > Backplane capacity drops, C_{int} is far too low
- Capacitance anomalies could come from 'wrong' structures

TCAD Workbench I

- To recheck geometry and make multiple simulations easier: usage of the workbench package:
 - Script and parameterize the entire simulation process instead of using command files
 - Corrections, new features, models, parameters can be added to all simulations at once
 - Has been shared with the other simulation groups → everyone can use same geometry (future: same simulation steps/models/etc.) → comparability of results
 - No user interaction needed when simulating multiple devices/setups

TCAD Workbench II

- Scripted and parameterized geometrical features:
 - All strip sensor distances: thickness, pitch, implant size, strip count, etc.
 - Sensor type: p- or n-type with correct doping, p-spray or p-stop(s)
 - HPK feature: 50nm Si₃N₄ over implants
 - Optional outer ring structure: protection- guard- and bias ring

Strip cross section of FZ-320-Y W6

Strip cross section of FZ-320-P W4

TCAD Workbench III

- Scripted and parameterized simulation steps:
 - Biasing/grounding, bias resistors, floating guardring
 - Physical parameters (temperature, fluence, etc.)
 - Voltage ramp → IV curve production and plot
 - Time transient with laser/mip (angle, duration, intensity, etc.)
 - Interstrip resistance measurement
 - Capacitance simulation \rightarrow CV and C_{int}
 - Automatic plot generation under construction
 - Extraction of 'interesting' values planned
- The following results are only based on a few test simulations

Crosscheck of scripting - simulation results I

- Time transient of traversing MIP
 - 20°C, 500V, p-type, MIP: 0° angle, hits on strip 1
 - Current height and shape as expected
 - Simulation takes too long: ~ 1h on desy-cms010 → numerical issue?

• Electric field: influence of p-stops, MIP and outer rings visible

outer rings strips p-stops

Crosscheck of scripting - simulation results II

> IV-curves

 Shape correct, absolute values will be corrected for actual sensor size (3D) to be comparable to data

R_{int} simulation

- First problems: expected Rint ~ 100-300 GΩ independent of type/isolation
- Simulation: n-type has 234 GΩ → good fit, but p-type has an Rint of only 1.2 MΩ → needs to be investigated

Crosscheck of scripting - simulation results III

Capacitance simulations

- CV: extractable depletion voltage agrees with measurements. Y-axis has to be scaled to actual geometry
- P-type has strange shape, U_{dep} not as good
- C_{int}: with no additional capacities, C_{int} in n-type is only one magnitude off (0.2pF/cm)
- In p-type still a factor of ~ 1000 too low
- → n-type shows that direct AC-contact simulation can work
- \rightarrow 'Tiny' R $_{\rm int}$ in p-type may correspond to low C $_{\rm int}$
- → Recheck isolation, possibly a more exact geometry can improve results

Summary

Simulation group

- Delhi and Karlsruhe are checking radiation damage models will be implemented into the workbench script when ready
- Workbench script made public to group → comparability of results

TCAD workbench

- 'mass production' of simulations possible, allows more structured approach
- Now running on workgroup server with local access → speed, disk space
- Still to be done:
 - > Improve plot generation, parameter extraction
 - Possibly transform simulation output into a non-proprietary format

Simulations

- Improved geometry to model HPK sensors more accurately → more input needed
- Oxide and oxide/silicon interface seems to be critical to R_{int} and C_{int}
 - → recheck mechanism of oxide traps and charges

