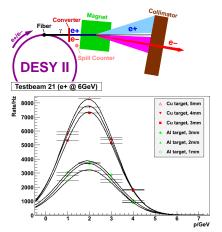
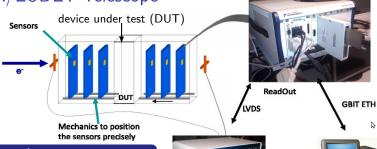


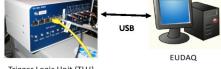
DESY Test Beam Facilities and CMS Pixel Studies


Armin Burgmeier, Luigi Calligaris, Thomas Eichhorn, Shiraz Habib,

• Hanno Perrey, Alexey Petrukhin, Daniel Pitzl

- 1 Test Beams at DESY
- 2 EUDET/AIDA Pixel Telescope
- 3 CMS Pixel Test Beam Campaign

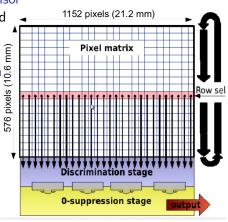

Test Beams at DESY

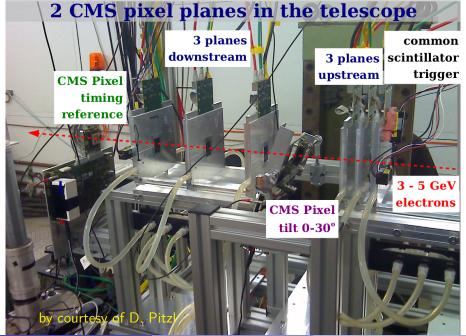

- three test beam lines available at DESY (TB 21, 22, 24)
- beam energy variable by setting magnet current
- ullet rates in the order of kHz for energies $1-4\,\mathrm{GeV}$
- test beam typically available to us over long periods of time

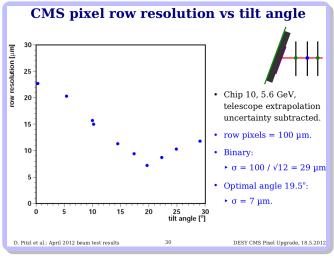
The AIDA/EUDET Telescope

Hardware Ingredients

- flexible Mechanics
 - distance of planes variable from 10 to 150 mm
 - ▶ up to 35 cm available for DUT
- very thin Sensors: Mimosa26
- Trigger Logic Unit (TLU)
- fast DAQ


Trigger Logic Unit (TLU)


pointing resolution @ DUT:


 $\sigma_i \sim 3 \, \mu \mathrm{m}$

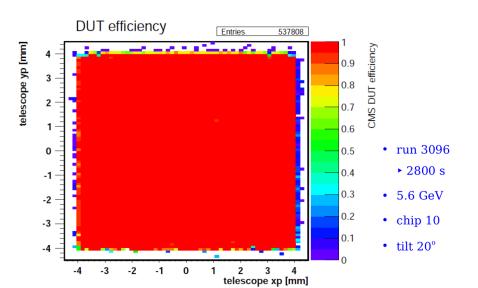
Mimosa26 Sensors

- by IPHC Strasbourg
- MAPS Monolithic Active Pixel Sensor
- Pixel size: $18.4 \times 18.4 \, \mu \mathrm{m}^2$
- Excellent ($\approx 4 \, \mu \mathrm{m}$) spatial resolution
- Readout in rolling shutter mode
- At $80\,\mathrm{MHz} \to 112.5\,\mathrm{\mu s}$ per frame
- No dead-time, continuous readout
- Digital readout
- On-pixel amplification
- 1 discriminator per column width
- Built-in data sparsification
- Current version of Mimosa26:
 - High resistivity epitaxial
 - Back-thinned down to $50\,\mu\mathrm{m}$

In April 2012: measured efficiency and resolution . . .

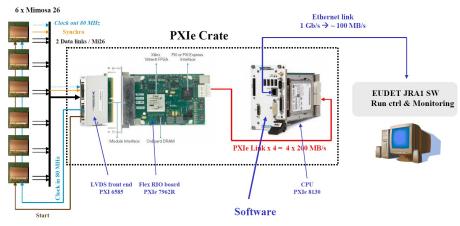
- vs bias voltage
- vs threshold
- vs tilt angle
- ... for present Pixel ROC PSI46 v2.3

⇒ reference data for 2nd beam test with new PSI46xdb in summer


Summary

- The AIDA/EUDET pixel telescope offers a flexible framework to test detectors; low material budget makes it ideal for test beams at DESY
- The CMS pixel was successfully operated together with the pixel telescope using parallel DAQs
- First results: efficiency above 99% for thresholds below 9 ke, and optimal resolution of $7 \mu m$ (at 3.3 ke and 20°tilt)

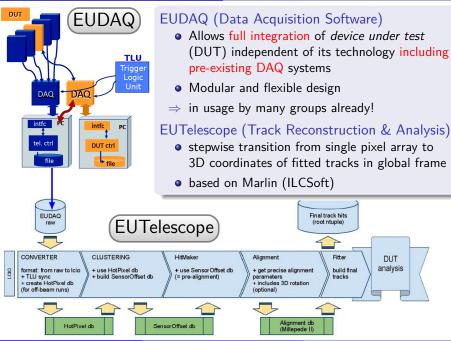
Overview Backup Slides

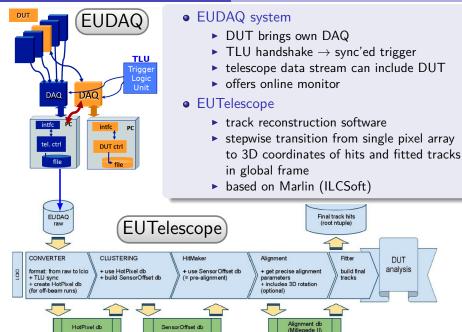

- 4 CMS Pixel Efficiency Map
- 5 DAQ Software and Analysis Framework
- 6 Telescope Performance

Efficiency map

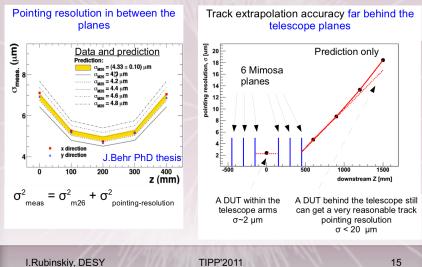
Upgrade of the DAQ in 2011

 $\begin{array}{c} \text{Much faster} \\ \Rightarrow \text{ready for the future} \end{array}$


System set up by Strasbourg, connection to EUDAQ done by DESY


The Trigger Logic Unit (TLU)

 Existing TLU designed to give a simple but flexible interface to trigger/timing signals at EUDET JRA1 beam-telescope



- ullet Produces triggers from beam scintillators (o EUDET-Memo-2009-4)
- Low cost
- Used by many ILC, LHC and "non-aligned" groups.
- Many copies build by Uni Göttingen to fulfill growing demand
- Existing TLU works. Why a new one?
- Want to move to one-trigger-per-particle (not one trigger per telescope frame) needed for LHC detectors.
- Cheaper to produce TLUs for integration in home labs.
- Decided that a AIDA high speed TLU is needed and defined the details.
- Mini TLU prototype in preparation

Telescope Performance

• data taken at CERN SPS (120 GeV pions)