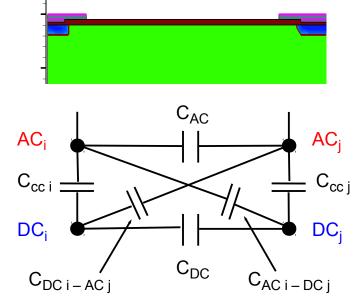
Silicon Strip Sensor Simulations

MSSD capacities

Thomas Eichhorn

Silicon Strip Sensor Simulations Phase II Meeting, 8.6.2012

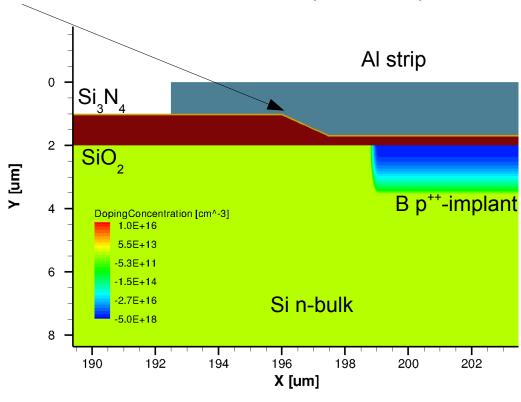


Status update

- Previous interstrip capacitance simulation anomalies fixed?
 - Improved geometry, performed parameter space scan for one MSSD sensor (#3)
 - Use gained information to re-run simulations for all MSSDs → in progress
 - Simulated C_{int} now corresponds to measurements
 - But: 'additional' capacitance network still required:

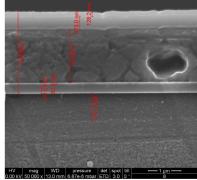
$$C_{int} \sim C_{AC} + C_{DC} + C_{DCi-ACj} + C_{ACi-DCj}$$

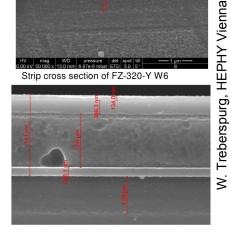
- Method described by S. Chatterji et al. in Solid-State Electronics 47 (2003) 1491 – 1499 and by K. Yamamoto et al. in NIMA 326 (1993) 222 – 227
- Individual capacities C_{AC}, C_{DC}, C_{DC-AC} are ~ 0.3 pF / cm



- Unknown HPK sensor properties could be extracted from simulations
 - Compare simulations with measurements → info from fitting parameters?

Improved geometry I

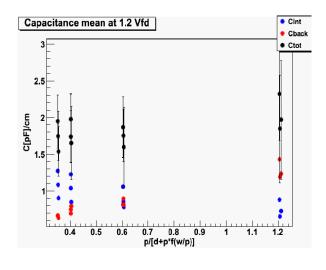

- Aluminum strips now have diagonal element to closer follow actual production process
- Nitride layer (Si₃N₄) included
- Intensive parameter scan over most geometrical sizes:
 - Mesh spacing
 - Al overhangs/form
 - Nitride width
- Future parameters to be checked:
 - Oxide charges (wider scan range)
 - Material properties (esp. Si, SiO₂)
 - Up to now: only n-type simulated, p/y-type sensors to follow



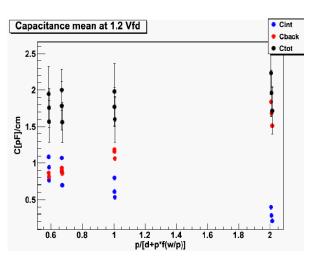
Improved geometry II

- Fixed parameters:
 - Sensor sizes given by original HPK specs: overall thickness, Al strip top width, implant width, pitch
 - Y-axis distances taken from Vienna measurements: Al, SiO2, Si3N4 and implant depths
 - Bulk (3 4.5 e12 cm⁻³) and strip doping (1e18 cm⁻³) from Karlsruhe simulations which were fitted to their data
- First conclusions from parameter scan for MSSD #3:
 - Pitch 80µm, Al width 23µm, implant width 10µm, FZ320N
 - Small mesh size is critical, but increases simulation time
 - Al overhang of 2μm, x-diagonal 1.5μm, Si₃N₄ overhang 5μm yield highest C
 - Al overhang esp. critical (up to 15% effect)

Strip cross section of FZ-320-P W4

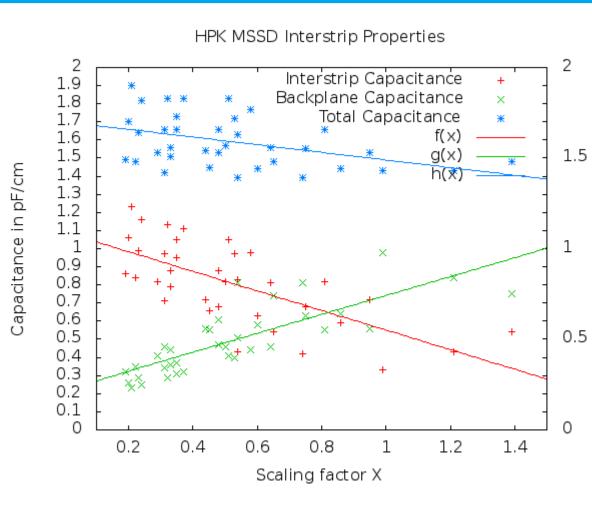

Experimental capacitance measurements

Plots from G. Auzinger (CERN):


FZ 320 N

p/[d+p*f(w/p)]

FZ 200 N

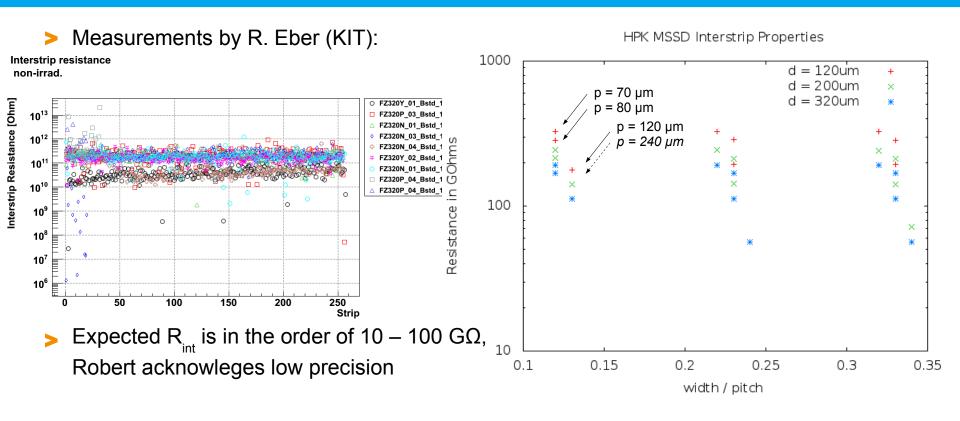

FZ 120 N

- Data shows C_{tot} as approx. constant, with C_{int} decreasing, C_{back} increasing over x
- > $x = p / \{ d + p * [-0.00111(w/p)^{-2} + 0.0586(w/p)^{-1} + 0.24 0.651(w/p) + 0.355(w/p)^{2}] \}$
 - Explained in NIMA 485 (2002) 343–361 → x(w/p) gives linear C
- Caveat: larger binning in x shown here

Simulated capacities

- Simulated C_{int} (and C_{back} / C_{tot}) now in the correct magnitude, but C_{tot} still decreasing
- Geometry for many x-values still has to be checked:
 - E.g.: Is a change in strip width reflected in the overhang?
- Data taken @ 1.2 V_{fd}, simulated capacities extracted at fixed voltage → V_{fd} method needs to be implemented

Summary / outlook


- > With information gained from adjusting one MSSD geometry:
 - Simulated capacities in correct magnitude (pF/cm)
 - Parameter scans for all MSSDs will be done (with wider scan range)
 - → further improve results
 - For C_{int}: additional capacities (DC-DC and AC-DC) still required
- p/y-type sensors to be simulated too → geometry already implemented, isolation dose is possibly an additional parameter to be scanned
- Material properties can be changed → are defaults ok?
- > Interstrip resistance R_{int} also simulated and has correct magnitude, but some effects not yet understood
- > Features still to be included: automatic V_{fd} extraction, output into non-proprietary format (ROOT)

Backup

Interstrip resistance

- Simulations can confirm order of magnitude
 - R_{int} independent of w/p ratio, but: R_{int} smaller for larger pitch?
 - sensor pitch and thickness distinguishable
- Missing data points due to failing simulation convergence → will be checked

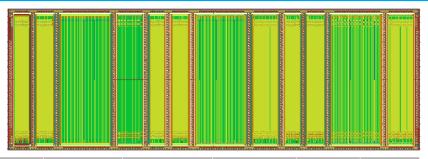
Simulation software

Synopsys TCAD

- Comercial package for semiconductor simulations
- Framework:
 - > Create 2D or 3D structure (materials, doping, etc) and generate a mesh
 - Select physical models to be used in simulation: temperature, field generation, carrier recombination, trapping (→ radiation damage), carrier lifetime, etc.
 - Include external effects: electric circuit (SPICE), laser illumination, traversing particle...
 - > Specify what kind of simulation: simple I-V, capacitive, or time-dependent
 - > Run simulation: at each mesh-point solve poisson's equation $\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\epsilon_r\epsilon_0} \quad \text{and carrier continuity equations:} \\ \nabla \cdot \vec{J_n} = q \left(R_{\text{eff}} + \frac{\partial n}{\partial t} \right) \\ \nabla \cdot \vec{J_p} = q \left(R_{\text{eff}} + \frac{\partial p}{\partial t} \right)$
 - > Derive physical properties: electric field, current flows, charge distributions, etc.

Simulation group within CMS sensor upgrade WG

- 4 other institutes: Delhi, Helsinki, Karlsruhe, Pisa
- Task list with simulation activities:
 - Device design
 - > MSSD, MPix, diodes, p-stop/p-spray, deep diffusion, biasing schemes, etc.
 - Charge collection and read-out
 - > Capacitance, 3D-coupling, lorentz angle, etc.
 - Radiation damage
 - > Full defect list, trap models, cluster defects, IV/CV/transient simulations, CCE, E-Fields, double junction, etc.
 - General
 - Comparison of simulation tools and packages
- > First selected task: device design, MSSD capacities

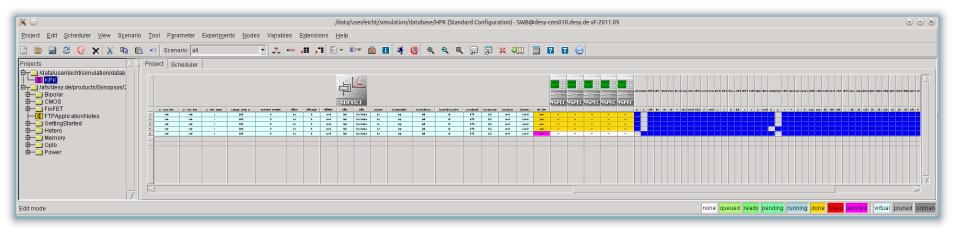

MSSD properties

- 12 strip sensor regions with different pitch and width → interstip capacitance C_{int} should vary
- Scaling factor X for comparison:

$$X = p / [d + p*f(w/p)]$$
 with

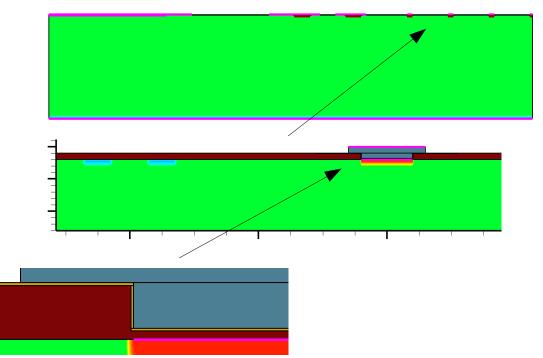
$$f(w/p) = -0.00111(w/p)^{-2} + 0.0586(w/p)^{-1} + 0.24 - 0.651(w/p) + 0.355(w/p)^{2}$$

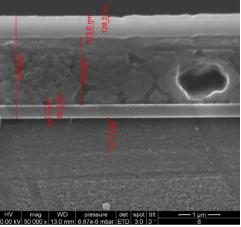
Measurements: total sensor capacity
C_{tot} = C_{int} + C_{back} is constant for all X
→ try to reproduce in simulations

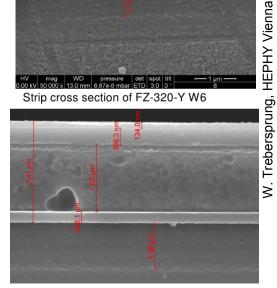


Sensor	Pitch [µm]	Implant width [µm]	Alu width [µm]	w/p	X
1	120	16	29	0,133	0,31
2	240	34	47	0,142	0,54
3	80	10	23	0,125	0,22
4	70	8,5	21,5	0,121	0,19
5	120	28	41	0,233	0,33
6	240	58	71	0,242	0,6
7	80	18	31	0,225	0,23
8	70	15,5	28,5	0,221	0,2
9	120	40	53	0,333	0,35
10	240	82	95	0,342	0,64
11	80	26	39	0,325	0,24
12	70	22,5	35,5	0,321	0,21

TCAD Workbench I


- To recheck geometry and make multiple simulations easier: usage of the workbench package:
 - Script and parameterize the entire simulation process instead of using command files
 - Corrections, new features, models, parameters can be added to all simulations at once
 - Has been shared with the other simulation groups → everyone can use same geometry (future: same simulation steps/models/etc.) → comparability of results
 - No user interaction needed when simulating multiple devices/setups




TCAD Workbench II

- Scripted and parameterized geometrical features:
 - All strip sensor distances: thickness, pitch, implant size, strip count, etc.
 - Sensor type: p- or n-type with correct doping, p-spray or p-stop(s)
 - HPK feature: 50nm Si₃N₄ over implants
 - Optional outer ring structure: protection- guard- and bias ring

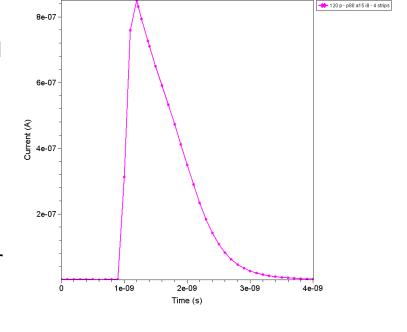
Strip cross section of FZ-320-Y W6

Strip cross section of FZ-320-P W4

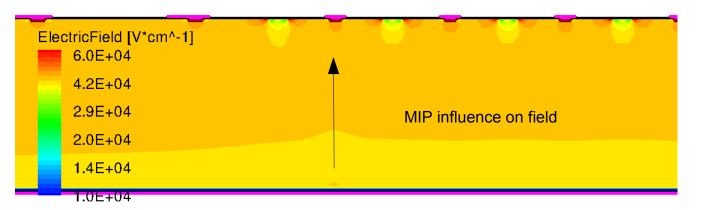
TCAD Workbench III

- Scripted and parameterized simulation steps:
 - Biasing/grounding, bias resistors, floating guardring
 - Physical parameters (temperature, fluence, etc.)
 - Voltage ramp → IV curve production and plot
 - Time transient with laser/mip (angle, duration, intensity, etc.)
 - Interstrip resistance measurement
 - Capacitance simulation \rightarrow CV and C_{int}
 - Automatic plot generation under construction
 - Extraction of 'interesting' values planned
- The following results are only based on a few test simulations

Crosscheck of scripting - simulation results I


Time transient of traversing MIP

outer rings

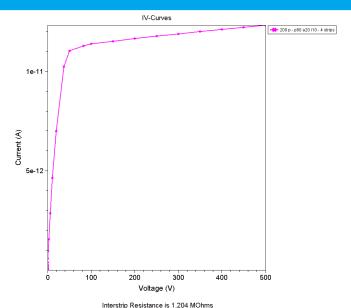

- 20°C, 500V, p-type, MIP: 0° angle, hits on strip 1
- Current height and shape as expected
- Simulation takes too long: ~ 1h on desy-cms010 → numerical issue?

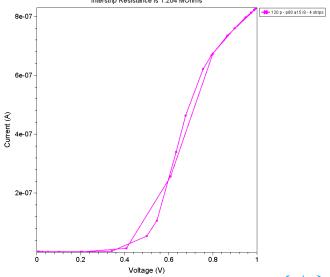
Electric field: influence of p-stops, MIP and outer rings visible

strips

Time Transient

p-stops

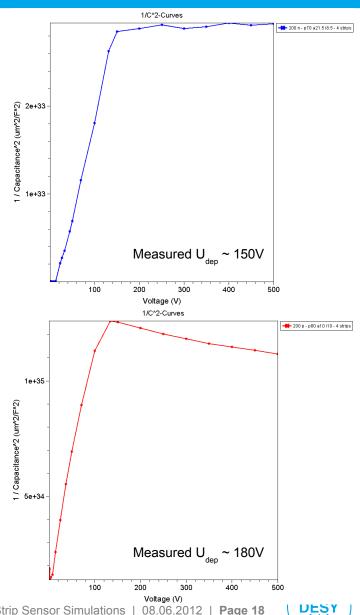

Crosscheck of scripting - simulation results II


IV-curves

 Shape correct, absolute values will be corrected for actual sensor size (3D) to be comparable to data

R_{int} simulation

- First problems: expected Rint ~ 100-300 GΩ independent of type/isolation
- Simulation: n-type has 234 GΩ → good fit, but p-type has an Rint of only 1.2 MΩ → needs to be investigated



Crosscheck of scripting - simulation results III

Capacitance simulations

- CV: extractable depletion voltage agrees with measurements. Y-axis has to be scaled to actual geometry
- P-type has strange shape, U_{dep} not as good
- C_{int}: with no additional capacities, C_{int} in n-type is only one magnitude off (0.2pF/cm)
- In p-type still a factor of ~ 1000 too low
- → n-type shows that direct AC-contact simulation can work
- \rightarrow 'Tiny' R $_{\rm int}$ in p-type may correspond to low C $_{\rm int}$
- → Recheck isolation, possibly a more exact geometry can improve results

Summary

Simulation group

- Delhi and Karlsruhe are checking radiation damage models will be implemented into the workbench script when ready
- Workbench script made public to group → comparability of results

TCAD workbench

- 'mass production' of simulations possible, allows more structured approach
- Now running on workgroup server with local access → speed, disk space
- Still to be done:
 - Improve plot generation, parameter extraction
 - Possibly transform simulation output into a non-proprietary format

Simulations

- Improved geometry to model HPK sensors more accurately → more input needed
- Oxide and oxide/silicon interface seems to be critical to R_{int} and C_{int}
 - → recheck mechanism of oxide traps and charges

