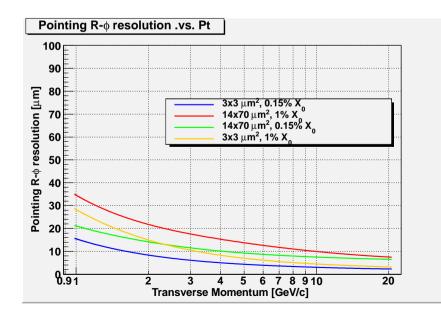
Development of CMOS Pixel Sensors for High-Precision Vertexing & Tracking Devices

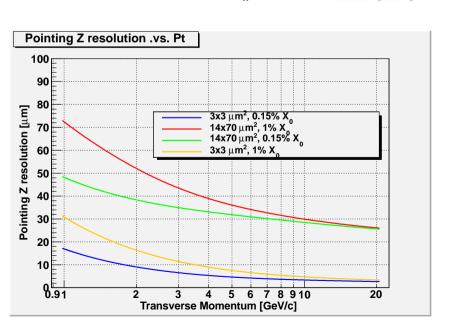
M. Winter (PICSEL team of IPHC-Strasbourg)

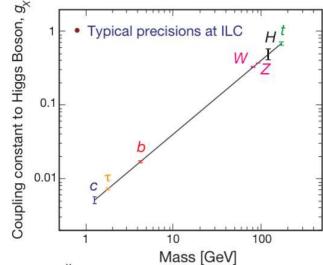
- Sensor design : coll. with IRFU-Saclay - (ALICE-MFT) - Ladder design : coll. with DESY - Oxford - Bristol - Tests : coll. with LBNL/STAR - Frankfurt/CBM - CERN-INFN/ALICE - DESY/AIDA

DESY - 3rd May 2012

Contents

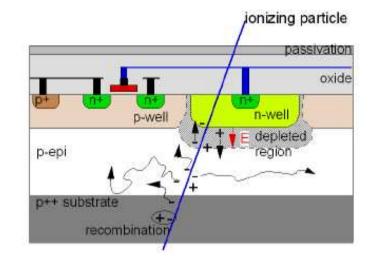

- Reminder: initial motivation & main features of CMOS sensors
- Architecture developped state of the art

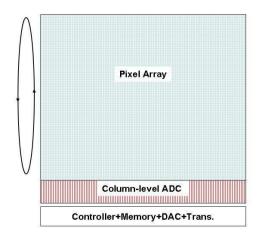

* MIMOSA-26 (EUDET chip applications) * MIMOSA-28 (STAR-PXL, AIDA)


- Application to an ILC vertex detector
 - * MIMOSA-30 (inner layers) * MIMOSA-31 (outer layers) * 2-sided ladders
- On-going R&D and plans until $2014/15 \Rightarrow$ Milestones !
 - * ALICE-ITS & -MFT * CBM-MVD * AIDA * ILC/CLIC * SuperB-SVT
- Summary (subatomic physics tracking devices)

ILC Vertexing Performance Goals

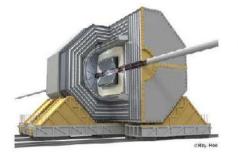
- CMOS PIXEL SENSORS (CPS) devt triggered by ILC vertex detector requirements :
 - * unprecedented granularity & material budget (very low power)
 - * much less demanding running conditions than at LHC
 - \Rightarrow alleviated read-out speed & radiation tolerance requests
- Vertexing goal:
 - * achieve high efficiency & purity flavour tagging \rightarrow charm & tau !!!
 - $\hookrightarrow \sigma_{R\phi,Z} \leq 5 \oplus 10/p \cdot \sin^{3/2}\theta \ \mu m \quad \rhd \ \text{LHC:} \ \sigma_{R\phi} \simeq 12 \oplus 70/p \cdot \sin^{3/2}\theta$
 - \triangleright Comparison: $\sigma_{R\phi,Z}$ (ILD) with VXD made of ATLAS-IBL or ILD-VXD pixels:





CMOS Pixel Sensors: Main Features

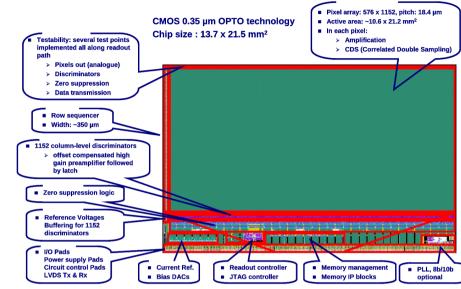
- Prominent features of CMOS pixel sensors:
 - * high granularity \Rightarrow excellent (micronic) spatial resolution
 - st very thin (signal generated in 10-20 μm thin epitaxial layer)
 - * signal processing μ -circuits integrated on sensor substrate
 - \Rightarrow impact on downstream electronics (\Rightarrow cost)
- CMOS pixel sensor technology has the highest potential
 - ⇒ R&D largely consists in trying to exploit potential at best with accessible industrial processes
- Organisation of MIMOSA sensors:
 - * manufactured in 0.35 μm OPTO process (mainly)
 - * signal sensing and analog processing in pixel array
 - * mixed and digital circuitry integrated in chip periphery
 - * read-out in rolling shutter mode
 - (pixels grouped in columns read out in //)
 - \Rightarrow impact on power consumption

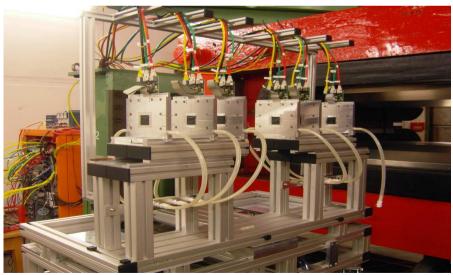

CPS R&D: A Long Path with Numerous Intermediate Steps

- Main objective: ILC, with staggered performances
 - MAPS applied to other experiments with intermediate requirements

<u>ILC >2020</u> Internatinal Linear Collider

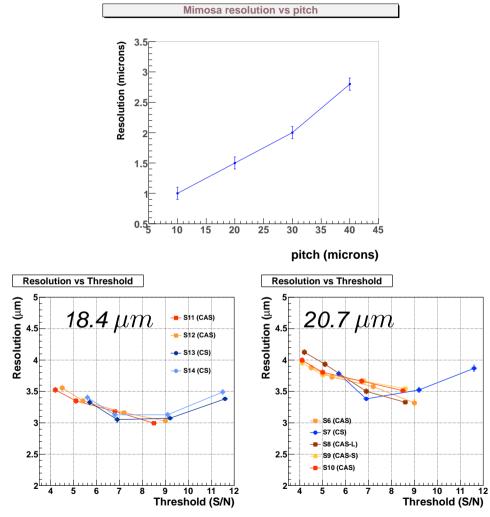
EUDET (R&D for ILC, EU project) STAR (Heavy Ion physics) **CBM** (Heavy Ion physics) **ILC (Particle physics)** HadronPhysics2 (generic R&D, EU project) AIDA (generic R&D, EU project) FIRST (Hadron therapy) ALICE/LHC (Heavy Ion physics) **EIC (Hadronic physics) CLIC** (Particle physics) SuperB (Particle physics)


STAR 2012 Solenoidal Tracker at RHIC


CBM 2017 Compressed Baryonic Matter

➔ Spinoff: Interdisciplinary Applications, biomedical, space ...

CMOS Pixel Sensors: Established Architecture


- Main characteristics of MIMOSA-26 sensor equipping EUDET BT:
 - * 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
 - * column // architecture with in-pixel amplification (cDS) and end-of-column discrimination, followed by \emptyset
 - * binary charge encoding
 - * active area: 1152 columns of 576 pixels (21.2 \times 10.6 mm²)
 - st pitch: 18.4 $\mu m
 ightarrow$ \sim 0.7 million pixels
 - Dash charge sharing $\Rightarrow~\sigma_{sp}\sim$ 3.-3.5 μm
 - * $t_{r.o.} \lesssim 100 \ \mu s$ (~10⁴ frames/s) suited to >10⁶ part./cm²/s
 - * JTAG programmable
 - * rolling shutter architecture
 - \Rightarrow full sensitive area dissipation \cong 1 row
 - $ho~\sim$ 250 mW/cm 2 power consumption (fct of N $_{col}$)
 - $\ensuremath{\, \mathrm{ \mbox{ } }}$ thinned to 50 $\ensuremath{\mu m}$
 - * various appli. : VD demonstr., NA63, oncotherapy, dosimetry, ...

Measured Spatial Resolution

- Compare position of impact on sensor surface predicted with BT to hit reconstructed with sensor under test : clusters reconstructed with eta-function, exploiting charge sharing between pixels
- Impact of pixel pitch (analog output) : $rac{1}{}$ ho
 ho
 ho $\sigma_{
 m sp} \sim 1 \ \mu m$ (10 μm pitch) $ightarrow \lesssim 3 \ \mu m$ (40 μm pitch)

- Impact of charge encoding resolution :
 - hinspace ex. of 20 μm pitch $\Rightarrow \sigma^{digi}_{sp}$ = pitch/ $\sqrt{12}$ ~ 5.7 μm

Nb of bits	12	3-4	1
Data	measured	reprocessed	measured
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm

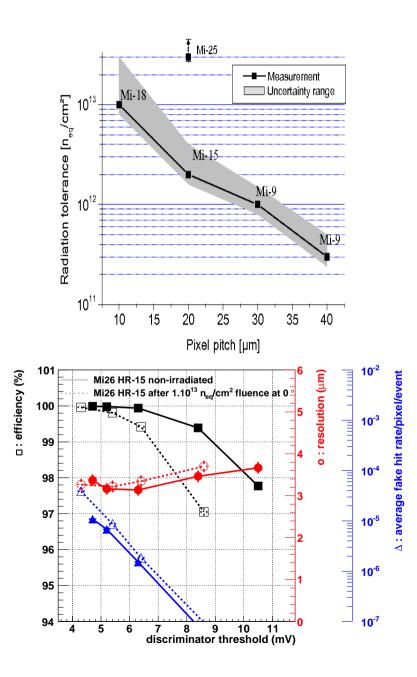
 $\triangleright \triangleright \triangleright$

Observed Radiation Tolerance

 $\triangleright \triangleright \triangleright$

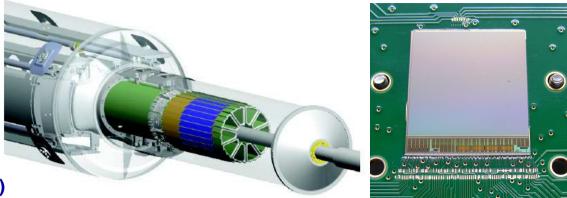
 $\triangleright \triangleright \triangleright$

- Introductory remarks :
 - * still evolving (csq of CMOS industry process param. evolution)
 - * CMOS technology expected to tolerate high ionising radiation doses (>> 10 MRad), in particular at < 0° C and short t_{integ}
 - * main a priori concern : NON-ionising radiation

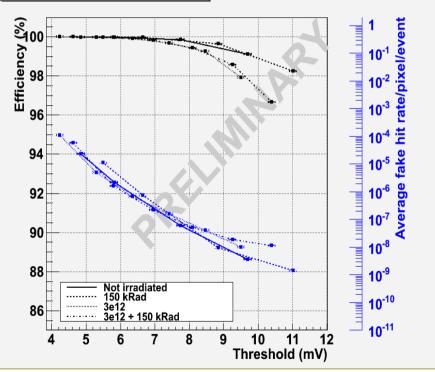

(in absence of thick depleted sensitive volume)

• Influence of pixel pitch :

* fig: all measts done with low resistivity epitaxial layer, but 1

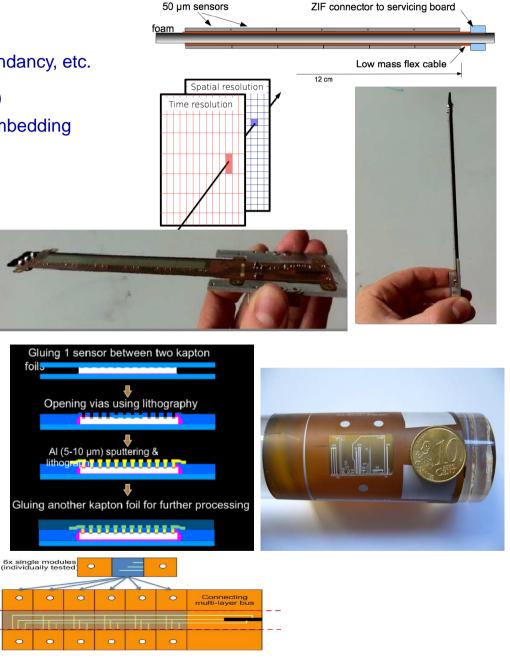

- ⇒ high density sensing diodes (≡ small pitch) improves non-ionising radiation tolerance
- Influence of epitaxial layer resistivity :
 * ex: 1 kΩ · cm & O(1)V depletion voltage
 - $\mbox{ * trend : }\gtrsim$ 1 $k\Omega\cdot cm$ & >> 10 V

$$\Rightarrow$$
 tolerance to \gtrsim 10 $^{14-15}$ n $_{eq}$ /cm 2 not excluded



State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - * 0.35 μm process with high-resistivity epitaxial layer
 - * column // architecture with in-pixel cDS & amplification
 - * end-of-column discrimination & binary charge encoding
 - * on-chip zero-suppression
 - * active area: 960 colums of 928 pixels (19.9 \times 19.2 mm²)
 - st pitch: 20.7 $\mu m
 ightarrow \sim$ 0.9 million pixels
 - \hookrightarrow charge sharing \Rightarrow $\sigma_{sp} \gtrsim$ 3.5 μm
 - * JTAG programmable
 - * $t_{r.o.} \leq 200 \ \mu s$ (~ 5×10³ frames/s) \Rightarrow suited to >10⁶ part./cm²/s
 - * 2 outputs at 160 MHz
 - $st \lesssim$ 150 mW/cm 2 power consumption
- $\triangleright \triangleright \triangleright$ Sensors fully evaluated : (50 μm thin)
 - * N \leq 15 e⁻ ENC at 30-35^oC (as MIMOSA-22AHR)
 - * ϵ_{det} , fake & σ_{sp} as expected
 - $-\infty$ Rad. tol. validated (3.10¹² n_{eq}/cm² & 150 kRad at 30°C)
 - $-\infty$ All specifications are met \Rightarrow 40 ladders under construction
- **DDD** Start of data taking early 2013



Mimosa 28 - epi 20 um - NC

Sensor Integration in Ultra Light Devices

- 2-sided ladders with time stamping for the ILD-VXD :
 - * manyfold bonus expected from 2-sided ladders:
 - compactness, alignment, pointing accuracy (shallow angle), redundancy, etc.
 - ★ studied by PLUME coll. (Oxford, Bristol, DESY, IPHC) & AIDA (EU)
 - Pixelated Ladder using Ultra-light Material Embedding
 - * square pixels for single point resolution on beam side
 - * elongated pixels for 4-5 times shorter r.o. time on other side
 - * correlate hits generated by traversing particles
 - $\textit{\texttt{*}}$ expected total material budget \sim 0.3 % X_{0}
 - \hookrightarrow 1st proto. (0.6 % X₀) fabricated & operationnal
 - ▷ beam tests at CERN-SPS (traversing m.i.p.) in Nov. '11
- Unsupported ladders (Hadron Physics 2 / FP-7)
 - * 50 μm thin CMOS sensors embedded in thin kapton and cabled with redistributed connections \rightarrow suited to curved surfaces ?
 - * expected total material budget \lesssim 0.15 % X $_0$
 - * 1st single sensor mechanical prototype fabricated
 - * 1st 3-sensor electrical proto. expected by Summer 2012

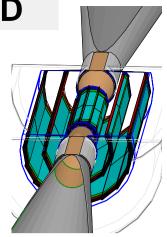
Final

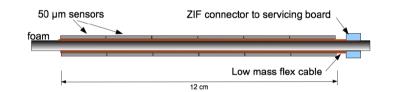
CMOS Pixel Sensors for the ILD-VXD

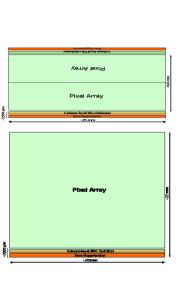
• Two types of CMOS Pixel Sensors (CPS):

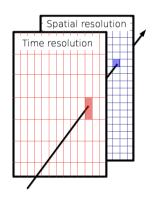
- ★ Inner layers (≤ 300 cm²) : priority to read-out speed & spatial resolution
 → small pixels (16×16 / 80 µm²) with binary charge encoding
 → t_{r.o.} ~ 50 / 10 µs; $\sigma_{sp} \leq 3 / 6 µm$ ★ Outer layers (~ 3000 cm²) : priority to power consumption and good resolution
 - $\hookrightarrow\,$ large pixels (35 $\!\times$ 35 μm^2) with 3-4 bits charge encoding
 - \hookrightarrow t_{r.o.} \sim 100 $\mu s; ~\sigma_{sp}\lesssim$ 4 μm
- * Total VXD instantaneous/average power < 700/20 W (0.35 μm process)

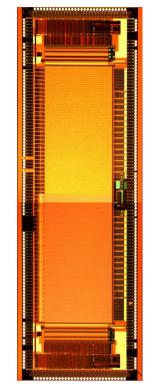
• 2-sided ladder concept for inner layer :

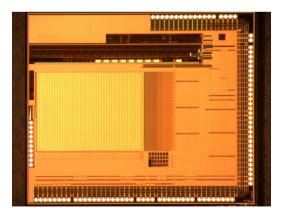

★ Square pixels (16×16 μm^2) on internal ladder face (σ_{sp} < 3 μm) & Elongated pixels (16×80 μm^2) on external ladder face (t_{r.o.} ~ 10 μs)


• Sensor final prototypes : fabricated in Q4/2011


- * MIMOSA-30: inner layer prototype with 2-sided read-out \triangleright \triangleright \triangleright
 - ← one side : 256 pixels (16×16 μm^2) other side : 64 pixels (16×64 μm^2)


* MIMOSA-31: outer layer prototype

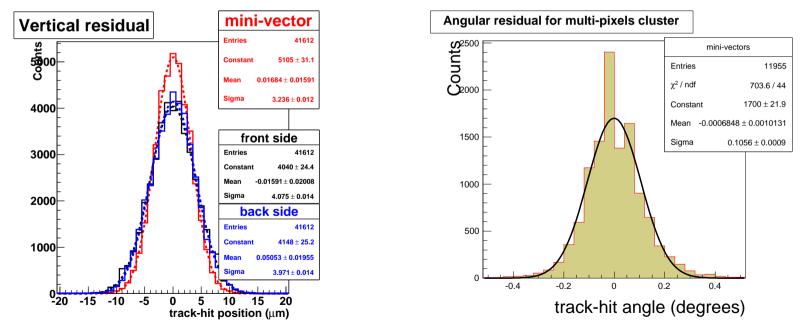

|>


CMOS Pixel Sensors: Status of Baseline Devt

- MIMOSA-30: prototype for ILD-VXD innermost layer \triangleright \triangleright \triangleright * 0.35 CMOS μm process with high-resistivity epitaxy * in-pixel CDS, rolling shutter read-out, binary sparsified output * high resolution side : pixels of 16×16 $\mu m^2 \Rightarrow$ expect $\sigma_{sp} < 3 \,\mu m$ • 128 columns (discri) & 8 col. (analog) of 256 rows (final scale) • read-out time \leq 50 μs * time stamping side : pixels of 16×64 $\mu m^2 \Rightarrow t_{r.o.} \sim$ 10 μs • (expect $\sigma_{sp} \sim$ 6 μm) • 128 columns (discri) and 8 col. (analog) of 64 rows (final scale) • lab tests positive : N \sim 15 e⁻ ENC & discri. all OK for $t_{r.o.} = 10 \mu s$ * beam tests (CERN-SPS) in June/July '12 $\Rightarrow \sigma_{sp}, \epsilon_{det}$, fake rate MIMOSA-31: prototype for ILD-VXD outer layers \triangleright \triangleright
 - * pixels of $35 \times 35 \ \mu m^2$ (power saving)
 - * 48 columns of 64 pixels ended with 4-bit ADC (1/10 of full scale chip)

 \hookrightarrow expect $\sigma_{sp} \lesssim 3.5 \, \mu m$

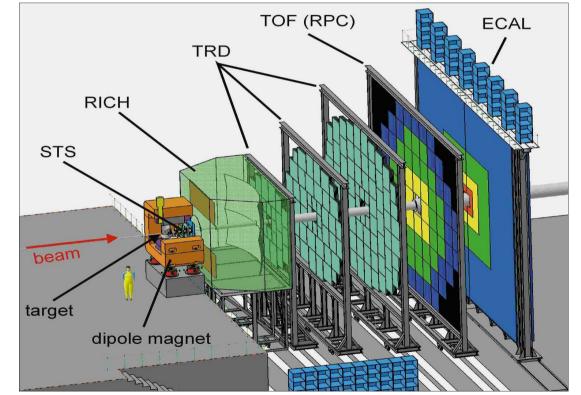
- * $t_{r.o.} \sim 10 \ \mu s$ (1/10 of complete column)
- * beam tests (DESY) in Q1/2013 $\Rightarrow \sigma_{sp}, \epsilon_{det}$, fake rate


2-Sided Ladder Beam Test Results

• PLUME prototype-2010 tested at SPS in Nov. 2011:

- * Beam telescope : 2 arms, each composed of 2 MIMOSA-26 sensors
- * DUT : 1 PLUME ladder prototype (0.6 % X_0)
 - \hookrightarrow 6 MIMOSA-26 sensors on each ladder face (> 8 Mpixels)
- * CERN-SPS beam : \gtrsim 100 GeV " π^- " beam
- st BT (track extrapolation) resolution on DUT \sim 1.8 μm
- * Studies with PLUME perpendicular and inclined (\sim 36°) w.r.t. beam line

* Preliminary results (no pick-up observed): combined impact resolution & pointing resolution



• New PLUME proto. under construction with 0.35 % X_0 (X-sect.) \rightarrow beam tests in Q4/2012 (SPS ?)

Applications of CPS : the CBM H.I. Experiment

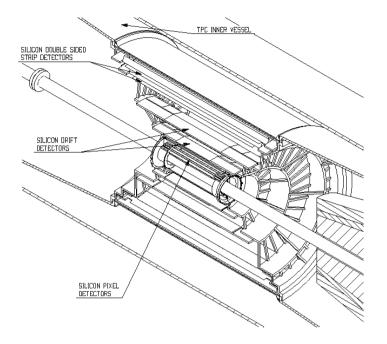
- Cold Baryonic Matter (CBM) experiment at FAIR/GSI:
 - * Micro-Vertex Detector (MVD) made of 2 or 3 stations located behind fixed target
 - * double-sided stations equipped with CMOS pixel sensors
 - * operation a negative temperature in vacuum
 - st each station accounts for \lesssim 0.5 % X $_0$
 - * sensor architecture close to ILC version

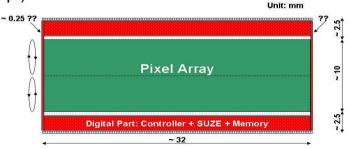
- Most demanding requirements :
 - * ultimately (\gtrsim 2020): 3D sensors \lesssim 10 $\mu s, >$ 10 $^{14}{\rm n}_{eq}/{\rm cm}^2, \gtrsim$ 30 MRad
 - * intermediate steps: 2D sensors \lesssim 30-40 μs , > 10 13 n $_{eq}$ /cm 2 , \gtrsim 3 MRad
 - * 1st sensor for SIS-100 (data taking \gtrsim 2018)

Applications of CPS : ALICE-ITS Upgrade

- ITS upgrade : envisionned for "2017-18" LHC long shutdown
 - * exploits space left by replacement of beam pipe with small radius (19 mm) section
 - * consists (at least) in adding L0 at \sim 22 mm radius (potentially : replace part of the ITS)
 - * 2 main pixel options considered (CDR) :
 - ♦ Hybrid pixel sensors with reduced material budget & pitch
 - ♦ CPS derived from STAR-PXL (ULTIMATE/MIMO-28)

• Differences w.r.t. ULTIMATE/M-28 :

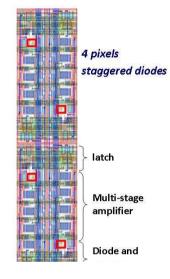

* > 1 MRad & 10¹³n_{eq}/cm² at T = 30°C (target values)

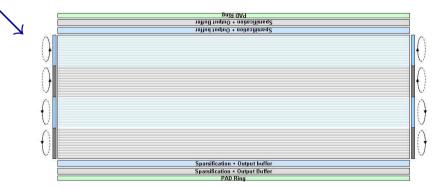

 \hookrightarrow 0.18 μm triple-well HR-epi techno. (instead of 0.35 μm double-well hR-epi)

- $st \sim$ 1 imes 3 cm 2 large sensitive area (instead of 2 imes 2 cm 2)
- st double-sided read-out (instead of single-sided) \rightarrowtail \lesssim 10 μs
- * 1 or 2 output pairs at \geq 300 MHz (instead of 1 output pair at 160 MHz)
- * possibly: 2-sided ladder derived from PLUME (< 0.5 % X_0)

 $rac{1}{2}$ > Conceptual Design Report delivered to LHCC in March 2012 > > > techno. choice \leq Q1/2013 (?)

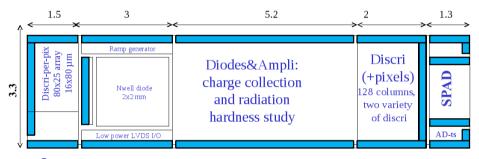
\hookrightarrow includes Muon Forward Tracker (MFT) based on CPS

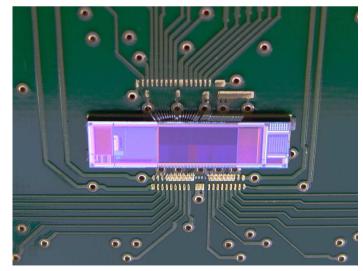

Read-Out Acceleration


- Motivations (w.r.t. occupancy) :
 - * required for ALICE-ITS & -MFT and CBM-MVD (and SuperB-SVT)
 - * robustness w.r.t. predicted hit rates (e.g. beam BG)
 - \hookrightarrow ILC beam BG (\gtrsim 1 TeV) \gtrsim 3×BG (500 GeV)
 - * standalone inner tracking capability (e.g. soft tracks)
- How to accelerate the elongated pixel read-out
 - * elongated pixel dimensions allow for in-pixel discriminators \Rightarrow 2 faster r.o. $\triangleright \triangleright$
 - * read out simultaneously 2 or 4 rows \Rightarrow 2-4 faster r.o./side
 - * subdivide pixel area in 4-8 sub-arrays read out in // \Rightarrow 2-4 faster r.o./side
 - $\vartriangleright\,$ 0.18 μm CMOS process needed
 - \hookrightarrow 6-7 ML, Ion. Rad. tol., design compactness, in-pixel PMOS T, ...
 - * conservative step: 2 discri./column end (22 μm wide)

 \Rightarrow read out 2 rows simultaneously

 \hookrightarrow 1st stage improvement: 50/10 $\mu s \rightarrow$ 25/5 μs


(5 μs also achievable with 0.35 μm technology)



MIMOSA-32 : Prototyping a 0.18 μm Process

- 0.18 μm imaging technology options used :
 - * Epitaxial layer: High-Resistivity (1-5 $k\Omega \cdot cm$) & "18 μm " thick \Rightarrow SNR, rad. tol., ...
 - * Quadruple well: deep P-type skin embedding N-well hosting P-MOS transistors \Rightarrow compactness, power, ...
 - * MIM capacitors
 - * start with 4 Metal Layers (6 ML run in 2012 chips)
 - ★ etc.
- Prototype sub-divided in several blocks : $\triangleright \triangleright \triangleright$
 - * Sensing elements and in-pixel amplifiers :
 - --> pixel dimensions : 20imes20/40/80 μm^2
 - –o 2 different types of sensing elements : diodes of \sim 9–15 μm^2
 - -- N-MOS and P-MOS transistor based amplifiers
 - * Discriminators :
 - -- Col. // pixel array ended with 1 discriminator/col. (2 variants)
 - Pixel array with in-pixel discriminator (16imes80 μm^2 pixels)
 - * Total surface \sim 43 ${\rm mm}^2$
- Mimosa-32 fabricated in Q4/2011 \Rightarrow Laboratory tests since April '12

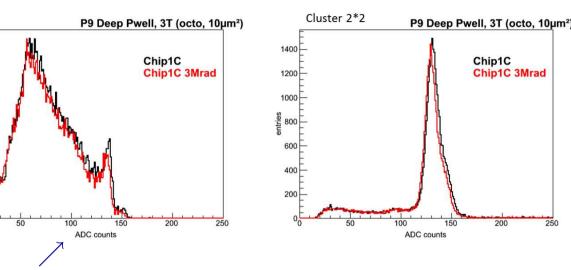
Preliminary 0.18 μm Process Test Results

• MIMOSA-32 lab tests (55 Fe source) of pixel matrix with analog output ightarrow Very preliminary results :

500

400

300

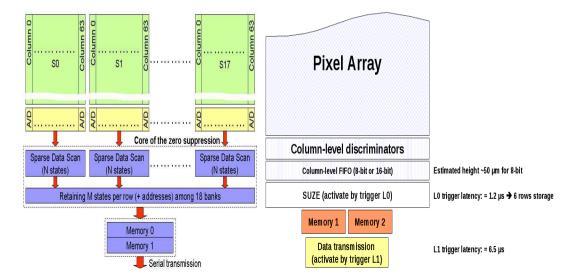

200

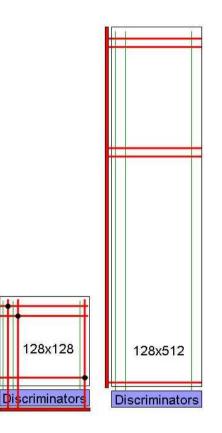
100

seed

- * Observed CCE (20×20 μm^2 pixels) :
 - \circ seed pixel : \sim 40–50 % \triangleright \triangleright \triangleright
 - \circ 2×2 pixel cluster : nearly 100 % \triangleright \triangleright \triangleright
 - \Rightarrow confirms Epi. layer 1-5 $k\Omega \cdot cm$
 - No parasitic charge coll. seen with Deep P-well
 - $_\circ\,$ CCE of 20imes40 μm^2 pixels
 - $\hookrightarrow\,$ seed \sim 30 % and with 1st crown \sim 75 %
- $\ensuremath{\,\times\,}$ Noise \sim 20 e $^-$ ENC at 20 $^\circ\text{C}$, unchanged at 35 $^\circ\text{C}$ (tbc !)
- * Irradiation: 0.4/1/3 MRad $\rightarrow \sim$ no effect up to 35°C (tbc !)

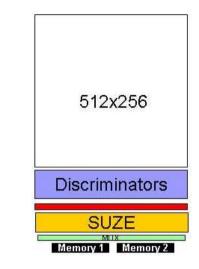
- * Difficult to find operating regime of in-pixel ampli. due to inaccurate simul. **models** \Rightarrow pixel design optimisation?
- Next steps :
 - * Beam tests of pixel matrix foreseen in June-July 2012 (incl. NI radiation tolerance assessment)
 - * Lab and beam tests of digital matrix through Summer 2012
 - * Lab tests of in-pixel discriminator array in Q3-Q4/2012 (tbc)
 - * MIMOSA-32bis fab. in Spring'12 with standard epitaxial layer \rightarrow lab tests in Summer 2012
 - * Submission of MIMOSA-32ter (July 2012) with alternative in-pixel amplification schemes

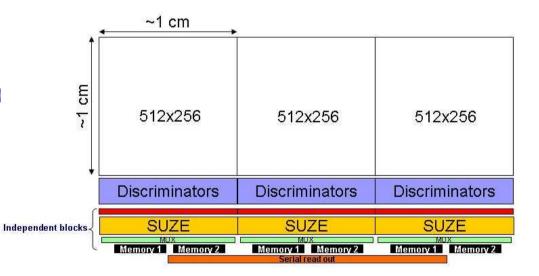

MISTRAL: 0.18 μm Architecture Prototyping


- 1st Objective : MISTRAL \equiv Mimosa for the Inner Silicon TRACKER of ALICE
- MIMOSA-22THR (Upstream part of MISTRAL) :
 - * Col. // pixel array with in-pixel ampli + pedestral subtraction (cDS)
 - * Each of 128 columns ended with discriminator + 8 columns without discri.
 - * Pixel array sub-divided in sub-arrays featuring different pixel designs (22×22/44 μm^2)
 - * 2 options for July'12 submission :
 - \circ end of column discriminator \equiv translation of MIMOSA-22AHR (0.35 techno.)
 - \circ simultaneous 2-row encoding & 2 discriminators/column \Rightarrow twice faster
- AROM-1 (Accelerated Read-Out Mimosa)

* in-pixel discri. & simultaneous 4-row encoding \Rightarrow 8 times faster

* submission in Octobre'12

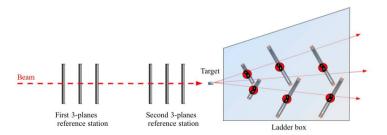

- SUZE-02 (Downstream part of MISTRAL) :
 - * Ø μ -circuits & output buffers (\equiv SUZE-01)
 - ★ add trigger L0 info after discriminators for
 data filtering ⇒ flow & power reduction
 - * add trigger L1 downstream of output buffers for further filtering \Rightarrow flow & power
 - * submission in Octobre'12



MISTRAL : Final Steps

- FSBB (Full Scale Basic Block) :
 - * Composition :
 - ightarrow Pixel array with \sim final pixel design (\sim 1 cm 2)
 - $-\infty$ Final r.o. circuitry (\emptyset , filtering, data transmission, ...)
 - → All read-out circuitry split in elementary blocks
 according to stitching design rules → AIDA-BT
 - * Submission : Summer 2013 (?)
- MISTRAL :
 - * Composition :
 - 3 full-size adjacent FSBB (1-sided read-out)
 or 6 half FSBB (2-sided read-out)
 - --- Complemented with serial r.o. circuitry
 - * Submission : Summer 2014 (?)
- Start MIMAIDA & MIMOSIS designs (+ others ?) :
 - \hookrightarrow submission in 2015

AIDA Project : Assessment of Stitching & 2-Sided Ladder

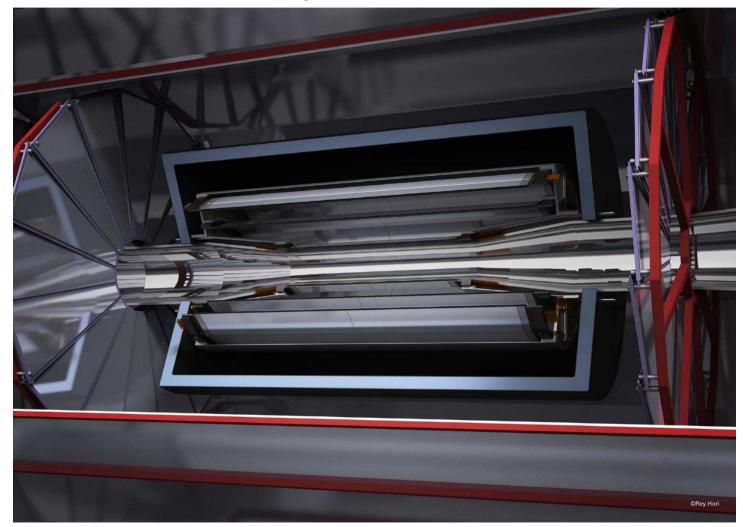

• Single Arm Large Area Telescope (SALAT) :

- st 2048imes3072 pixels (\sim 20 μm pitch)
 - \Rightarrow 4×6 cm² sensitive area, ~ 3.5 μm spatial resolution
- * requires combining several reticules (based on FSBB)
 - \Rightarrow stitching process \Rightarrow establish proof of principle
- st 2-sided read-out of 1024 rows in \sim 200 μs
 - \Rightarrow 3 planes of Large Area Telescope for AIDA project (EU-FP7)
- st windowing of \lesssim 1imes6 cm 2 (collimated beam)
 - \Rightarrow \sim 50 μs r.o. time
- * 50-100 μm pitch variants under consideration (trackers)

• Alignment Investigation Device (AID) :

- * box allowing to mount 3-4 pairs of ladders arranged in 3-4 consecutive layers \equiv VTX sector
- * can be equipped with PLUME (2-sided) ladders
- * ladders mounted on movable micrometric supports
 - ⇒ investigate alignment with particles traversing overlapping regions of neighbouring ladders
- * allows developing clustering, tracking & vertexing algo. with particle beams

		SIOLEN BURNESS	SUZE	NICCLIMINATION	SICULUIUSIC	BING STREET
	212×212	915×915	212×213	915×915	915×915	212×612
Discriminators	212x512	612×612	612×612	612×612	£12x512	e15×e12
512x512	512x512	512x512	512x512	512x512	512x512	512x512
Discriminators	512x512	512x512	512x512	512x512	512x512	512x512
SUZE	Discriminators	Discriminators SUZE	Discriminators SU7E	Discriminators SUZE	Discriminators	Discriminato
(emaine (emaine)	IONORA IONORA	1000000 (0000000)	Contraction Contraction	Ganada Ganada		(001100 (001100



Synergy with ILC Vertex Detectors

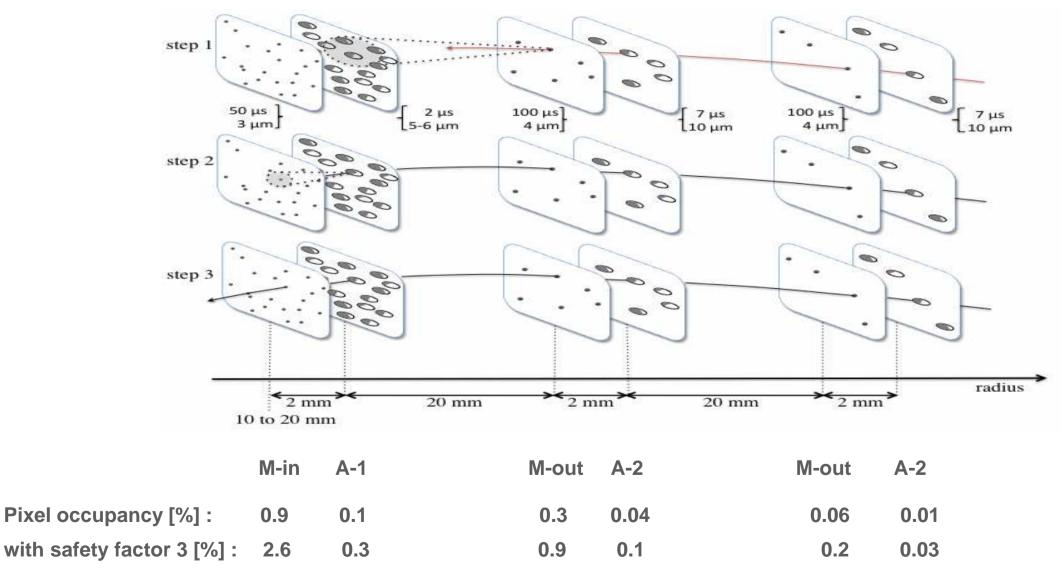
• Specs of ALICE-ITS/-MFT, CBM-MVD, SuperB-SVT, AIDA, ... overlap those of ILC Vertex Detectors

Example of ILD-VXD

MIMOSA & AROM Sensors for an ILC Vertex Detector

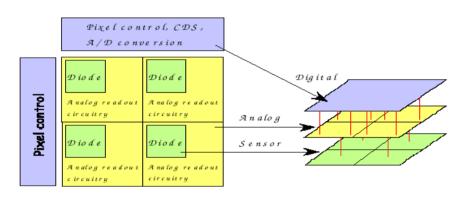
- Assuming MIMOSA and AROM variants to equip innermost and outer layers
 - * MIMOSA-in and AROM-1 equip innermost layer
 - * MIMOSA-out and AROM-2 equip outer layers

Sensor version	MIMOSA-in	MIMOSA-out	AROM-1	AROM-2
Active area dimensions $[mm^2]$	8.7×31.0	19.6×31.0	10.9×31.0	20.8×31.0
Pixel dimensions $[\mu m^2]$	17×17	34×34	17×85	34×72
Single point resolution $[\mu m]$	\lesssim 3	\lesssim 4	5-7	\sim 10
Read-out time $[\mu s]$	50	\sim 100	1.5	7
Power consumption: instantaneous [W]	\sim 1.8	\sim 0.6	2.7	0.7
average [mW]	36	12	55	14


- Power consumption (average value stands for 5 ms long power-on periods \equiv 2% duty cycle):
 - * layer 1: 250 W (inst.) \Rightarrow 5 W (average)
 - * layer 2: 120 W (inst.) \Rightarrow 2.4 W (average)
 - * layer 3: 200 W (inst.) \Rightarrow 4 W (average)
- \Rightarrow Complete detector instantaneous power \lesssim 600 W \Rightarrow <12 W in average \Rightarrow air cooling OK
- \triangleright \triangleright \triangleright power cycling still needs being investigated \rightarrow power > 100 ladders (<10 g) with ~200 A in 3.5 T !!!

Tracking through ILD-VXD

• Tracking from outside towards IP combining MIMOSA spatial resolution & AROM timestamp



* AROM provides < 2 or 7 μs time stamping

Using 3DIT to reach Ultimate CMOS Sensor Performances

- 3D Integration Technologies allow integrating high density signal processing μ circuits inside **small** pixels by stacking (~ 10 μ m) thin tiers interconnected at pixel level
- 3DIT are expected to be particularly beneficial for CMOS sensors :
 - * combine different fab. processes \Rightarrow chose best one for each tier/functionnality
 - * alleviate constraints on peripheral circuitry and on transistor type inside pixel, etc.
- Split signal collection and processing functionnalities
 - * Tier-1: charge sensing
 - * Tier-2: analog-mixed μ circuits
 - * Tier-3: digital μ circuits

Conventional MAPS 4 Pixel Layout

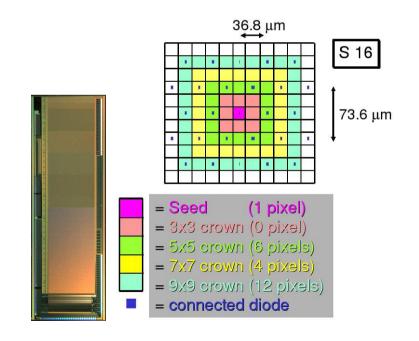
3D 4 Pixel Layout

- The path to nominal exploitation of CMOS pixel potential :
 - * fully depleted 10-20 μm thick epitaxy \Rightarrow t_{collect} \lesssim 5 ns, rad. hardness > Hybrid Pixel Sensors ???
 - * FEE with \leq 10 ns time resolution \rightarrow solution for CLIC & HL-LHC specifications ???
- 3DIC coordinated by FNAL produced painfully 1st generation of chips (debugging process) Devt of CAIRN = CMOS Active pixel sensors with vertically Integrated Read-out & Networking functionnalities

SUMMARY (MIMOSA/AROM based Subatomic Phys. Trackers)

- Increasing demand for highly granular & thin (low power) pixel devices (charm tagging) :
 - \Rightarrow CPS offer the highest potential for these applications (also for large areas \rightarrow cost, power)
- R&D of 1st generation CPS (0.35 μm) \sim completed: STAR-PXL, CBM-MVD1, ...
 - \hookrightarrow **ILD-VXD sensors** comply with all specs for 500 GeV : σ_{sp} , thickness, rad.tol., speed, power
- 2-sided ladder (0.3% X₀) & unsupported ladder (0.15 % X₀) devts progressing : PLUME, SERNWIETE

 \hookrightarrow allows for < 3 μm / 2 μs in ILD-VXD innermost layer (< 3.5 μm / 7 μs in outer layers)


- R&D of 2nd generation CPS (0.18 μm) started with MIMOSA-32: radiation tol. & read-out speed
 - Several MIMOSA-32 lab test results encouraging : CCE, Ion. Rad. tol., noise at 35°C
 - Beam tests in Summer 2012 for m.i.p. detection performance assessment (incl. NI rad. tol.)
 - Present sources of investigation : inaccurate in-pixel μ circuitry modeling, noise \geq 30 % too high at 20°C
- Next steps of 0.18 μm based sensor devt \equiv important milestones :
 - Establish high-performance in-pixel signal amplification μ -circuitry in Q3/Q4 2012
 - Mid-scale prototypes validating architectures (MIMOSA-22THR, AROM-1, SUZE-02) in Q3/Q4 2012
 - Full Scale Basic Block (FSBB) expected to be fabricated in 2013
 - Dedicated sensors ≥ 2014: ALICE-ITS/-MFT, CBM-MVD2/-MVD3, ILC-500/1000, AIDA, SuperB-SVT, eIC, ...
- Long term R&D : 3D sensors for CLIC, HL-LHC, etc. \rightarrow CAIRN chips under devt

Towards a Large Pitch

- Large pitch : Motivations
 - * elongated pixels allow faster read-out

```
times trackers (e.g. ILD-SIT) require \sigma_{sp}\gtrsim 10 \mu m
```

- \Rightarrow minimise number of pixels for the sake of power dissipation, integration time and data flow
- Large pitch : Limitations (besides spatial resolution)
 - * DANGER: increasing distance inbetween neighbouring diodes
 - \Rightarrow particles traversing sensor "far" from sensing diodes may not be detected because of e⁻ recombination
 - * "fragile" detection efficiency, exposed to losses due to irradiation, high temperature operation & "slow" read-out
- Elongated pixels : Test results
 - * elongated pixels allow minimising the drawbacks of large pitch
 - * concept evaluated with MIMOSA-22AHR prototype, composed of a sub-array with 18.4×73.6 μm^2 pixels $\triangleright \triangleright \triangleright$
 - times m.i.p. detection performances assessed at CERN-SPS (T \sim 15 $^{\circ}$ C)
 - --- $\epsilon_{det}\sim$ 99.8 %
 - $ightarrow \sigma_{sp}\sim$ 5-6 μm (binary charge encoding)
- Square pixels : prototype back from foundry
 - * MIMOSA-29 : fabricated on high-resistivity epitaxy in Summer '11 * pixels of 64×16/32/64 μm^2 and 80×16/48/80 μm^2
 - * chips back from foundry \Rightarrow test preparation under way ₂₆

VXD - SIT Variant Composed of CPS

- ILD-SIT : baseline assumes 2 double-sided μ strip detector layers
 - * try understanding if CMOS sensors could improve performance with their high spatial resolution
 - * advantage : spatial resolution \vartriangleright 4×4 μm^2 instead of 7×50 μm^2
 - \Rightarrow improved soft track reconstruction (p) and TPC link
 - potentially : material budget, cost
 - * disadvantage : time resolution \triangleright 7 μs instead of O(100)ns Is power a pb ?
- Variant of VXD–SIT design made of CMOS pixel sensors (other variants give similar performances)

Layer	σ_{sp}	t_{int}	Occupancy [%]	Power
	MIMOSA/AROM	MIMOSA/AROM	w/o safey factor	inst./average
VXD-1	3 / 5-6 μm	50 / 2 μs	0.9(2.6) / 0.1(0.3)	250/5 W
VXD-2	4 / 10 μm	100 / 7 μs	0.3(0.9) / 0.04(0.1)	120/2.4 W
VXD-3	4 / 10 μm	100 / 7 μs	0.06(0.2) / 0.01(0.03)	200/4 W
SIT-1	4 / 15 μm	100 / 7 μs	\lesssim 0.01	\sim 1.3 kW/26 W
SIT-2	4 μm	100 μs	\lesssim 0.01	\sim 2.5 kW/50 W

- ILD-SIT : power consumption (average \lesssim 100 W for \gtrsim 4 m 2 coverage) seems affordable
 - \Rightarrow need benchmark event study with beam BG to evaluate track reconstruction performance