

DEPFET Active pixel sensors

Carlos Marinas University of Bonn

On behalf of the DEPFET Collaboration

cmarinas@uni-bonn.de

ECFA Detector Panel Meeting - DESY

Outline

SuperKEKB and ILC

- Common requirements
- DEPFET
 - Fundamentals
 - System elements
- Recent progress
 - PXD6 production
 - Test beam
 - Mechanics and cooling

KEKB upgrade plan: SuperKEKB Flavour Factory

• Asymmetric energy (4 GeV, 7 GeV) e^+e^- collider at the $E_{cm}=m(Y(4S))$ to be realized by upgrading the existing KEKB machine

• Final luminosity 8.10³⁵ cm⁻² s⁻¹, 40 times higher than the existing KEKB Factory

The Belle II Collaboration decided on DEPFET as baseline for PXD

▶ Positive impact on DEPFETs for ILC

universität**bon**

• Both detectors have very similar requirements

	ILC	Belle II
Occupancy	0.13 hits/µm²/s	0.1 hits/µm²/s
Radiation	< 100 krad/year	2 Mrad/year
Duty cycle	1/200	1
Frame time	25-100 µs	20 µs
Momentum range	All momenta	Low momentum (< 1 GeV)
Acceptance	6°-174°	17°-155°

• ILC

 \blacktriangleright Excellent single point resolution (3-5 µm) \rightarrow Small pixel size 25 µm²

Low material budget (0.1%X₀/layer)

• Belle II

> Modest spatial resolution (10 μ m) \rightarrow Moderate pixel size (50 x 75 μ m²)

> Few 100 MeV momenta \rightarrow Lowest possible material budget (0.2% X₀/layer**)

Vertexing requirements

DEPFET – DEpleted P-channel Field Effect Transistor universität

Each pixel is a p-channel FET on a completely depleted bulk (sideward depletion). Charge is collected by drift

> A deep n-implant creates a potential minimum for electrons under the gate (internal gate)

Signal electrons accumulate in the internal gate and modulate the transistor current (g_a≈400 pA/e⁻)

Accumulated charge can be removed by a clear contact

drain

Low power consumption

Excellent signal-to-noise ratio

Thin detectors

clear

From a transistor to a detector

Operation mode: Row-wise readout

Row-wise readout (Rolling Shutter)

- (If CDS) Select a row, read the current (I_1) , clear the DEPFET and read the current again (I_2) . $I_{Signal} = I_1 I_2$
- Single sampling with pedestal substraction afterwards (Baseline)
- Low power consumption: Only one row is active at a time; readout on demand.
- Steering chips needed (Switchers) and limited frame rate.

Single sampling

DEPFET auxiliary ASICs

DHP (Data Handling Processor)

Processor

	114-01-01	A DESCRIPTION OF TAXABLE	and train also	No. 10	ALC: NAME OF		118 11 11	
11 I I I I I I I I I I I I I I I I I I		The second second						I DECE
		a state of the second	a distant	Desire de la competencia de la			Colorado Colorado	
		and the second second	1		-			
<u> </u>	in Continues				1.1			111
	and a second							
	State of the local division of							
	also and the second	Statill Column	The state of	STREET, STOLEN STREET,		The state of the second	101	
					Di la Di			
				10.1				
		1 1 1	1.111251		1			11
				U.S.	1000			
	and the same product of		Alast 12 June 1	Cherry Contraction				100
				and a local				at 1
	all section and	Sump of the	L TO THE R		Deal State	Real Property lies	Case July	

IBM CMOS 90 nm (TSMC 65 nm) Stores raw data and pedestals Common mode and pedestal correction Data reduction (zero suppression) Timing signal generation

DEPFET auxiliary ASICs

DHP (Data Handling Processor)

Processor

IBM CMOS 90 nm (TSMC 65 nm) Stores raw data and pedestals Common mode and pedestal correction Data reduction (zero suppression) Timing signal generation

The layout of the module periphery is ready as well

Off-module signal flow

cmarinas@uni-bonn.de

Optimization: Full simulation chain

Optimization: Full simulation chain

General layout of a DEPFET detector

cmarinas@uni-bonn.de

Thinning technology: All silicon sensors

Use anisotropic etching on bonded wafers to create a thin, self-supporting sensor

 \rightarrow One material uniform and small thermal expansion

Oxidation and back side implant on sensor wafer

wafer bonding and thinning

• Wafer bonding (with SiO₂ in between) and grinding/polishing of top wafer. Thin sensor side to the desired thickness

- Process DEPFET on top side \rightarrow passivation
- Anisotropic deep etching opens "windows" in the handle wafer. Etch backside up to oxide/implant (etch stops SiO₂)

Thinning technology

PXD6 prototype production

8 wafers with 50 μm thin sensors

- Small test matrices to test different pixel sizes (50-200 μm)
- Design variations: short gate lengths, clear structures, drift
- Full size sensors –half ladders for prototyping
- Technology variations on the wafer level

90 steps fabrication process: 9 Implantations 19 Lithographies 2 Poly-layers 2 Alu-layers Back side processing

First thin DEPFET sensors produced!

PXD6 - Beam Tests

Belle II design

Sensor 32x64 pixels 50x75x**50** μm³ SwitcherB and DCDB at full speed DCDB readout at 320MHz 100 ns row time

Close to final specs!

Based on the valuable information obtained with the PXD6, the final Belle II production (PXD9) is already launched

PXD6 - Noise, pedestals, residuals and seed signal

A few dead pixels due to brocken DCDBv1 channels

universität**bonn**

Homogeneous noise map (0.5 LSB at 100 MHz)

TB 2008 and 2009: PXD5 ILC sensors

Electronic MultiChip Module (E-MCM)

4 layer kapton cable attached and wire bonded to Si-Module for I/O and power

Electronic MultiChip Module (E-MCM)

Metal system as close as possible to final \rightarrow Electrical information

Signal integrity analysis

+ pre-emphasis

Radiation hardness

Cooling strategy

Remember the DEPFET detector unit, the ladder and how the ladders are assembled to form a vertex detector:

- The material budget must be minimal, no active cooling is allowed inside the acceptance
- The major amount of heat is dissipated in the readout chips, at both ends of the ladder
- The most straightforward solution:
 - Massive structures outside the acceptance to cool down the readout chips
 - The center of the ladder must be cooled using cold air

- Thinner pipe
- Smaller radius
- Lighter materials

Blue: CO₂ capillaries Yellow: Air channels

Inner layer close to the IP (14mm)

Additional carbon fibers capillaries to cool the Switchers, if needed (not tested yet)

- Low material budget cooling
 - Massive structures outside the acceptance to cool down the readout chips
 - The center of the ladder rely on cold air

Just a gentle air flow (2 m/s) is enough to decrease and homogenize the temperature distribution

Measurements with mockup

Thermo-mechanical measurements

cmarinas@uni-bonn.de

Temperatur [°C]

ILC scenario: Power cycle and air only

↘ Naïve approach using the XFEL hands-on:

 The power consumptions are weighted accordingly to the estimated duty cycle.
→ Completely shutting down the DEPFET and the analogue part of the electronics between trains → 1/25 power reduction if 1/100 duty cycle

The air speed and temperature are not optimized to minimize the temperature distribution

 P_{FE} =(0.5/25.) W / per chip P_{Sw} =(0.1/25.) W / per chip P_{Sensor} =(1./25.) W in total

↘ Although <u>very</u> preliminary, the cooling seems feasible so far

- The DEPFET Collaboration is developing pixel sensors with integrated amplification
- The good performance of the DEPFET detectors in terms of spatial resolution, sensor material and power consumption is demonstrated
- Transparent and precise vertex detectors for Belle II and ILC can be produced
- The Belle II PXD boosted the development of DEPFET detectors \rightarrow Direct benefit in the ILC project
- Building a real system: Every detail (although not covered here) is being considered
 - \rightarrow Interconnection technologies, cooling, mechanics, ASICs, data transmission...

Thank you

cmarinas@uni-bonn.de

In-module signal flow

universitätbonn

cmarinas@uni-bonn.de