On Solutions of Recurrences I

Marko Petkovšek

Faculty of Mathematics and Physics University of Ljubljana

RISC Linz, July 9, 2012

Outline

- 1 Summation and recurrences
- 2 What is a solution?
- **3** C-recursive sequences
- 4 P-recursive sequences
- 5 Recurrence operators
- 6 Difference rings
- 7 Solutions of special types

Summation and recurrences

$$s_{n} = \sum_{k=0}^{n-1} t_{k}$$

$$f$$

$$s_{n+1} - s_{n} = t_{n}; \quad s_{0} = 0$$

$$f$$

$$t_{n}s_{n+2} - (t_{n} + t_{n+1})s_{n+1} + t_{n+1}s_{n} = 0; \quad s_{0} = 0, s_{1} = t_{0}$$

▶ ★ 문 ► ★ 문 ► _ 문

Representation of sequences

$$G_a(x) = \sum_{n=0}^{\infty} a_n x^n$$

Example

• *recursive:*
$$a_0 = 0, a_1 = 1,$$

$$a_n = 2a_{n-1} - a_{n-2} \quad \text{for } n \ge 2$$

- explicit: $a_n = n$ for $n \ge 0$
- by generating function:

$$G_a(x) = \frac{x}{(1-x)^2}$$

▶ < ≣ ▶ <</p>

B> B

Notation:

K ... algebraically closed field of characteristic 0

Definition

A sequence $\langle a_n \rangle_{n=0}^{\infty} \in K^{\mathbb{N}}$ is *C*-recursive if there are $d \in \mathbb{N}$ and constants $c_1, c_2, \ldots, c_d \in K$, $c_d \neq 0$, such that

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_d a_{n-d}$$

for all $n \ge d$.

Let
$$\langle a_n
angle_{n=0}^{\infty} \in \mathcal{K}^{\mathbb{N}}$$
 and $\mathcal{G}_{\mathsf{a}}(x) = \sum_{n=0}^{\infty} a_n x^n$.

The following are equivalent:

1
$$\langle a_n \rangle_{n=0}^{\infty}$$
 is C-recursive,
2 $a_n = \sum_{i=1}^{r} P_i(n) \alpha_i^n$ where $P_i \in K[n]$ and $\alpha_i \in K$,
3 $G_a(x) = \frac{P(x)}{Q(x)}$ where $P, Q \in K[x]$, deg $P < \deg Q$ and $Q(0) \neq 0$.

C-recursive sequences are closed under the following binary operations $(a, b) \mapsto c$:

- **1** addition: $c_n = a_n + b_n$
- **2** Hadamard (termwise) multiplication: $c_n = a_n b_n$
- **3** Cauchy multiplication (convolution): $c_n = \sum_{i=0}^n a_i b_{n-i}$
- 4 interlacing: $\langle c_0, c_1, c_2, c_3, \ldots \rangle = \langle a_0, b_0, a_1, b_1, \ldots \rangle$

Remark

These operations extend naturally to an arbitrary nonzero finite number of operands.

C-recursive sequences are closed under the following unary operations $a \mapsto c$:

- **1** scalar multiplication: $c_n = \lambda a_n \quad (\lambda \in K)$
- 2 (left) shift: $c_n = a_{n+1}$
- 3 indefinite summation: $c_n = \sum_{k=0}^n a_k$
- 4 multisection: $c_n = a_{kn+r}$ $(k \in \mathbb{N}, 0 \le r < k)$

Example

•
$$a_n = n+1$$
 is C-recursive,
• $a_n^{-1} = \frac{1}{n+1}$ is not C-recursive.

Question: When are *a* and 1/a are both C-recursive?

Definition

A sequence $a \in K^{\mathbb{N}}$ is *geometric* if $a_0 \neq 0$ and $\exists q \in K^*$:

 $a_n = q a_{n-1}$

for all $n \ge 1$ (equivalently: $a_n = a_0 q^n$ for all $n \ge 0$).

Observation

a geometric \implies a^{-1} geometric

Theorem

(Larson & Taft, 1990) Sequences a and 1/a both C-recursive \iff a is the interlacing of one or more geometric sequences.

• • = • • = •

Definition

A sequence $\langle a_n \rangle_{n=0}^{\infty} \in K^{\mathbb{N}}$ is *P*-recursive if there are $d \in \mathbb{N}$ and polynomials $p_0, p_1, \ldots, p_d \in K[n]$, $p_d \neq 0$, such that

$$p_d(n)a_{n+d} + p_{d-1}(n)a_{n+d-1} + \cdots + p_0(n)a_n = 0$$

for all $n \ge 0$.

Definition

A f.p.s. $f(x) \in K[[x]]$ is *D*-finite if there are $d \in \mathbb{N}$ and polynomials $q_0, q_1, \ldots, q_d \in K[x], q_d \neq 0$, such that

$$q_d(x)f^{(d)}(x) + q_{d-1}(x)f^{(d-1)}(x) + \cdots + q_0(x)f(x) = 0.$$

Let
$$\langle a_n \rangle_{n=0}^{\infty} \in K^{\mathbb{N}}$$
 and $G_a(x) = \sum_{n=0}^{\infty} a_n x^n$.

The following are equivalent:

- **1** $\langle a_n \rangle_{n=0}^{\infty}$ is *P*-recursive,
- **2** $G_a(x)$ is D-finite.

Theorem

P-recursive sequences are closed under the following operations:

- 1 addition
- 2 Hadamard multiplication
- **3** Cauchy multiplication
- 4 interlacing
- 5 scalar multiplication
- 6 shift
- **7** indefinite summation
- 8 multisection

Example

•
$$a_n = 2^n + 1$$
 is P-recursive (even C-recursive),

•
$$b_n := a_n^{-1} = \frac{1}{2^n + 1}$$
 is not P-recursive.

Sketch of proof:

$$G_b(x) = \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} \frac{x^n}{2^n + 1}$$

radius of convergence:

$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|b_n|}} = \lim_{n \to \infty} \sqrt[n]{2^n + 1} = 2$$

$$\lim_{n \to \infty} \sqrt[n]{2^n + 1} = 2$$
Marko Petkovšek
On Solutions of Recurrences I

$$G_b(2x) = \sum_{n=0}^{\infty} \frac{2^n}{2^n + 1} x^n = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^n + 1} \right) x^n$$

$$G_b(2x) = \frac{1}{1 - x} - G_b(x)$$
(1)

$$\begin{array}{rcl} x = 1 & \frac{1}{1-x} \text{ singular, } G_b \text{ regular } \implies & G_b \text{ singular at } x = 2 \\ x = 2 & \frac{1}{1-x} \text{ regular, } G_b \text{ singular } \implies & G_b \text{ singular at } x = 4 \\ x = 4 & \frac{1}{1-x} \text{ regular, } G_b \text{ singular } \implies & G_b \text{ singular at } x = 8 \end{array}$$

. . .

æ

By induction on k: $G_b(x)$ singular at $x = 2^k$ for all $k \in \mathbb{N}$

- \implies G_b not D-finite
- \implies *b* not P-recursive

Question: When are *a* and 1/a are both P-recursive?

Definition

A sequence $a \in K^{\mathbb{N}}$ is *hypergeometric* if:

2 $\exists p, q \in K[n] \setminus \{0\}$:

$$p(n) a_{n+1} + q(n) a_n = 0$$

for all $n \ge 0$.

Observation

a hypergeometric
$$\implies$$
 a^{-1} hypergeometric

Theorem

(Singer, 1997) Sequences a and 1/a both P-recursive \iff a is the interlacing of one or more hypergeometric sequences.

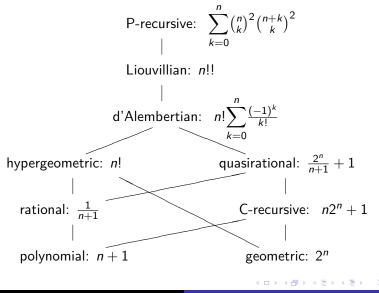
Notation:

 $\mathcal{H}(K)$... hypergeometric sequences in $K^{\mathbb{N}}$

Solving linear recurrences with polynomial coefficients

Given: $d \in \mathbb{N}$ and $p_0, p_1, \dots, p_d \in K[n], p_d \neq 0$ Find: all nice solutions $a \in K^{\mathbb{N}}$ of

$$p_d(n)a_{n+d} + p_{d-1}(n)a_{n+d-1} + \cdots + p_0(n)a_n = 0$$



Notation:

$$(E^ka)_n = a_{n+k} \quad (k \in \mathbb{N})$$

Given $d \in \mathbb{N}$ and $p_0, p_1, \ldots, p_d \in K[n]$, $p_d \neq 0$:

 $L: \ K^{\mathbb{N}} \to K^{\mathbb{N}} \qquad \qquad \text{linear recurrence operator,} \\ L = \sum_{k=0}^{d} p_k E^k$

 $(La)_n = \sum_{k=0}^d p_k(n) a_{n+k}$ application of L

Notation:

 $K[n]\langle E \rangle$... algebra of linear recurrence operators with polynomial coefficients

Commutation rule for *composition* of operators:

$$E \cdot p(n) = p(n+1) E$$
$$\sum_{k=0}^{d} p_k(n) E^k \cdot \sum_{j=0}^{e} q_j(n) E^j = \sum_{k=0}^{d} \sum_{j=0}^{e} p_k(n) q_j(n+k) E^{j+k}$$

Difference rings

Definition

A difference ring is a pair (K, σ) where:

- K is a commutative ring with multiplicative identity,
- $\sigma: K \to K$ is a ring automorphism.

If, in addition, K is a field then (K, σ) is a difference field.

Example

- $(K[x], \sigma)$ with $\sigma x = x + 1$, $\sigma|_{\kappa} = id_{\kappa}$ is a difference ring.
- ($K(x), \sigma$) with $\sigma x = x + 1, \sigma|_{\kappa} = id_{\kappa}$ is a difference field.
- $(\mathcal{K}^{\mathbb{N}}, E)$ where $E : \langle a_0, a_1, a_2, \ldots \rangle \mapsto \langle a_1, a_2, a_3, \ldots \rangle$ is *not* a difference ring.

• • = • • = •

For $a, b \in K^{\mathbb{N}}$ define:

$$a \sim b \iff \exists N \in \mathbb{N} : \forall n \ge N : a_n = b_n$$

Notation:

$$\mathcal{S}(\mathcal{K}) \;=\; \mathcal{K}^{\mathbb{N}}/\sim \quad \ldots \quad$$
 ring of germs of sequences

. . .

$$\sigma:\mathcal{S}(\mathsf{K})
ightarrow\mathcal{S}(\mathsf{K})$$

unique automorphism of $\mathcal{S}(K)$ defined by $\sigma \circ \varphi = \varphi \circ E$

Observation

 $(\mathcal{S}(K), \sigma)$ is a difference ring.

Example

■ a = 0 in $S(K) \iff a_n = 0$ for all large enough n■ a = b in $S(K) \iff a_n = b_n$ for all large enough n■ K[n], K(n), H(K) naturally embed into S(K)

Henceforth we work in $(\mathcal{S}(K), \sigma)$.

Given: $L \in K[n]\langle \sigma \rangle$, $L \neq 0$

Find: a basis of the space $\{y \in K[n]; Ly = 0\}$

Outline of algorithm

Find an upper bound for deg y.
 Use the method of undetermined coefficients.

Given: $L \in K[n]\langle \sigma \rangle$, $L \neq 0$

Find: a basis of the space $\{y \in K(n); Ly = 0\}$

Outline of algorithm

- **1** Find a universal denominator for *y*.
- Find polynomial solutions of the equation satisfied by the numerator of y.

Given:
$$L = \sum_{k=0}^{d} p_k \sigma^k \in K[n]\langle \sigma \rangle, \quad L \neq 0$$

Find: a generating set for $Lin(\{y \in \mathcal{H}(K); Ly = 0\})$

Outline of algorithm

1 Construct the Riccatti equation for $r = \frac{\sigma y}{y} \in K(n)$:

$$\sum_{k=0}^{d} p_k \prod_{j=0}^{k-1} \sigma^j r = 0$$
 (2)

• • = • • = •

2 Use the ansatz

$$r = z \frac{a}{b} \frac{\sigma c}{c}$$
with $z \in K^*$, $a, b, c \in K[n]$ monic,
 a, c coprime, $b, \sigma c$ coprime, $a, \sigma^k b$ coprime for all $k \in \mathbb{N}$:

$$\sum_{k=0}^{d} z^{k} p_{k} \left(\prod_{j=0}^{k-1} \sigma^{j} a \right) \left(\prod_{j=k}^{d-1} \sigma^{j} b \right) \sigma^{k} c = 0 \qquad (3)$$

æ

3 Construct a finite set of candidates for (a, b, z) using the following consequences of (3):

$$a \mid p_{0},$$

$$b \mid \sigma^{1-d} p_{d},$$

$$\sum_{\substack{0 \le k \le d \\ \deg P_{k} = m}} \operatorname{lc}(P_{k}) z^{k} = 0$$
where $P_{k} = p_{k} \left(\prod_{j=0}^{k-1} \sigma^{j} a\right) \left(\prod_{j=k}^{d-1} \sigma^{j} b\right),$
 $m = \max_{0 \le k \le d} \deg P_{k}.$

A B M A B M

For each candidate triple (a, b, z), find polynomial solutions c of the equation

$$\sum_{k=0}^{d} z^k P_k \sigma^k c = 0.$$

Example

(AMM problem no. 10375) Solve

$$y_{n+2} - 2(2n+3)^2 y_{n+1} + 4(n+1)^2(2n+1)(2n+3)y_n = 0.$$

$$p_2(n) = 1$$

$$p_1(n) = -2(2n+3)^2$$

$$p_0(n) = 4(n+1)^2(2n+1)(2n+3)$$

< ∃ >

B> B

Riccatti equation:

$$p_2(n) r(n+1)r(n) + p_1(n) r(n) + p_0(n) = 0$$

2 plug in the ansatz:

3 candidates for (a, b, z):

Take, e.g.,
$$a(n) = (n+1)(n+\frac{1}{2})$$
 and $b(n) = 1$.
 $z^2 - 8z + 16 = (z-4)^2 = 0$

Take z = 4.

< ∃ >

э

4 equation for c:

$$(n+2)c(n+2) - (2n+3)c(n+1) + (n+1)c(n) = 0$$

Polynomial solution: $c(n) = 1$

$$r(n) = z \frac{a(n)}{b(n)} \frac{c(n+1)}{c(n)} = 4(n+1)\left(n+\frac{1}{2}\right)$$
$$\frac{y_{n+1}}{y_n} = r(n) = (2n+1)(2n+2) \implies y_n = C(2n)!$$

æ

(*) * 문 * * 문 * · ·