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Summation and recurrences

sn =
n−1∑
k=0

tk

m
sn+1 − sn = tn; s0 = 0

m
tnsn+2−(tn+tn+1)sn+1+tn+1sn = 0; s0 = 0, s1 = t0
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What is a solution?

Representation of sequences

recursive: a0, a1, . . . , ad−1 given,

an = F (an−1, an−2, . . . , a0, n) for n ≥ d

explicit: an = f (n) for n ≥ 0

by generating function:

Ga(x) =
∞∑

n=0

anxn
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What is a solution?

Example

recursive: a0 = 0, a1 = 1,

an = 2an−1 − an−2 for n ≥ 2

explicit: an = n for n ≥ 0

by generating function:

Ga(x) =
x

(1− x)2
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C-recursive sequences

Notation:

K . . . algebraically closed field of characteristic 0

Definition
A sequence 〈an〉∞n=0 ∈ K N is C-recursive if there are d ∈ N
and constants c1, c2, . . . , cd ∈ K , cd 6= 0, such that

an = c1an−1 + c2an−2 + · · ·+ cdan−d

for all n ≥ d .
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C-recursive sequences

Let 〈an〉∞n=0 ∈ K N and Ga(x) =
∑∞

n=0 anxn.

Theorem

The following are equivalent:

1 〈an〉∞n=0 is C-recursive,

2 an =
r∑

i=1

Pi(n) αn
i where Pi ∈ K [n] and αi ∈ K,

3 Ga(x) =
P(x)

Q(x)
where P, Q ∈ K [x ], deg P < deg Q and

Q(0) 6= 0.
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C-recursive sequences

Theorem
C-recursive sequences are closed under the following binary
operations (a, b) 7→ c:

1 addition: cn = an + bn

2 Hadamard (termwise) multiplication: cn = anbn

3 Cauchy multiplication (convolution): cn =
∑n

i=0 aibn−i

4 interlacing: 〈c0, c1, c2, c3, . . .〉 = 〈a0, b0, a1, b1, . . .〉

Remark
These operations extend naturally to an arbitrary nonzero
finite number of operands.
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C-recursive sequences

Theorem
C-recursive sequences are closed under the following unary
operations a 7→ c:

1 scalar multiplication: cn = λan (λ ∈ K )

2 (left) shift: cn = an+1

3 indefinite summation: cn =
∑n

k=0 ak

4 multisection: cn = akn+r (k ∈ N, 0 ≤ r < k)
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C-recursive sequences

Example

an = n + 1 is C-recursive,

a−1
n =

1
n + 1 is not C-recursive.

Question: When are a and 1/a are both C-recursive?
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C-recursive sequences

Definition
A sequence a ∈ K N is geometric if a0 6= 0 and ∃q ∈ K ∗:

an = q an−1

for all n ≥ 1 (equivalently: an = a0 qn for all n ≥ 0).

Observation
a geometric =⇒ a−1 geometric

Theorem
(Larson & Taft, 1990) Sequences a and 1/a both C-recursive
⇐⇒ a is the interlacing of one or more geometric sequences.
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P-recursive sequences

Definition
A sequence 〈an〉∞n=0 ∈ K N is P-recursive if there are d ∈ N
and polynomials p0, p1, . . . , pd ∈ K [n], pd 6= 0, such that

pd(n)an+d + pd−1(n)an+d−1 + · · ·+ p0(n)an = 0

for all n ≥ 0.

Definition
A f.p.s. f (x) ∈ K [[x ]] is D-finite if there are d ∈ N
and polynomials q0, q1, . . . , qd ∈ K [x ], qd 6= 0, such that

qd(x)f (d)(x) + qd−1(x)f (d−1)(x) + · · ·+ q0(x)f (x) = 0.
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P-recursive sequences

Let 〈an〉∞n=0 ∈ K N and Ga(x) =
∑∞

n=0 anxn.

Theorem
The following are equivalent:

1 〈an〉∞n=0 is P-recursive,
2 Ga(x) is D-finite.

Marko Petkovšek On Solutions of Recurrences I



P-recursive sequences

Theorem
P-recursive sequences are closed under the following
operations:

1 addition
2 Hadamard multiplication
3 Cauchy multiplication
4 interlacing
5 scalar multiplication
6 shift
7 indefinite summation
8 multisection
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P-recursive sequences

Example

an = 2n + 1 is P-recursive (even C-recursive),

bn := a−1
n =

1
2n + 1 is not P-recursive.

Sketch of proof:

Gb(x) =
∞∑

n=0

bnxn =
∞∑

n=0

xn

2n + 1

radius of convergence:

r =
1

lim supn→∞
n
√
|bn|

= lim
n→∞

n
√

2n + 1 = 2
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P-recursive sequences

Gb(2x) =
∞∑

n=0

2n

2n + 1xn =
∞∑

n=0

(
1− 1

2n + 1

)
xn

Gb(2x) =
1

1− x − Gb(x) (1)

x = 1: 1
1−x singular, Gb regular =⇒ Gb singular at x = 2

x = 2: 1
1−x regular, Gb singular =⇒ Gb singular at x = 4

x = 4: 1
1−x regular, Gb singular =⇒ Gb singular at x = 8

. . .
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P-recursive sequences

By induction on k : Gb(x) singular at x = 2k for all k ∈ N
=⇒ Gb not D-finite
=⇒ b not P-recursive �

Question: When are a and 1/a are both P-recursive?

Definition
A sequence a ∈ K N is hypergeometric if:

1 ∃N ∈ N : an 6= 0 for all n ≥ N ,
2 ∃p, q ∈ K [n] \ {0}:

p(n) an+1 + q(n) an = 0

for all n ≥ 0.
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P-recursive sequences

Observation
a hypergeometric =⇒ a−1 hypergeometric

Theorem
(Singer, 1997) Sequences a and 1/a both P-recursive ⇐⇒
a is the interlacing of one or more hypergeometric sequences.

Notation:

H(K ) . . . hypergeometric sequences in K N
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P-recursive sequences

Solving linear recurrences
with polynomial coefficients

Given: d ∈ N and p0, p1, . . . , pd ∈ K [n], pd 6= 0
Find: all nice solutions a ∈ K N of

pd(n)an+d + pd−1(n)an+d−1 + · · ·+ p0(n)an = 0
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P-recursive sequences

polynomial: n + 1 geometric: 2n

rational: 1
n+1 C-recursive: n2n + 1

hypergeometric: n! quasirational: 2n

n+1 + 1

d’Alembertian: n!
n∑

k=0

(−1)k

k!

Liouvillian: n!!

P-recursive:
n∑

k=0

(n
k
)2(n+k

k
)2

   
   

   
  

HH
HH

H
HH

H
HH

H
   

   
   

  

!!
!!
!

aa
aa

a
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Recurrence operators

Notation:

E : K N → K N (left) shift operator,
(Ea)n = an+1 application of E

(E ka)n = an+k (k ∈ N)

Given d ∈ N and p0, p1, . . . , pd ∈ K [n], pd 6= 0:

L : K N → K N linear recurrence operator,
L =

∑d
k=0 pk E k

(La)n =
∑d

k=0 pk(n) an+k application of L
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Recurrence operators

Notation:

K [n]〈E 〉 . . . algebra of linear recurrence operators
with polynomial coefficients

Commutation rule for composition of operators:

E · p(n) = p(n + 1) E

d∑
k=0

pk(n)E k ·
e∑

j=0

qj(n)E j =
d∑

k=0

e∑
j=0

pk(n)qj(n + k)E j+k
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Difference rings

Definition
A difference ring is a pair (K , σ) where:

K is a commutative ring with multiplicative identity,
σ : K → K is a ring automorphism.

If, in addition, K is a field then (K , σ) is a difference field.

Example

(K [x ], σ) with σx = x + 1, σ|K = idK is a difference ring.
(K (x), σ) with σx = x + 1, σ|K = idK is a difference field.
(K N, E ) where E : 〈a0, a1, a2, . . .〉 7→ 〈a1, a2, a3 . . .〉 is not
a difference ring.
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Difference rings

For a, b ∈ K N define:

a ∼ b ⇐⇒ ∃N ∈ N : ∀n ≥ N : an = bn

Notation:

S(K ) = K N/ ∼ . . . ring of germs of sequences

σ : S(K ) → S(K ) . . . unique automorphism of S(K )
defined by σ ◦ ϕ = ϕ ◦ E

Observation
(S(K ), σ) is a difference ring.
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Difference rings

Example

a = 0 in S(K ) ⇐⇒ an = 0 for all large enough n
a = b in S(K ) ⇐⇒ an = bn for all large enough n
K [n], K (n), H(K ) naturally embed into S(K )

Henceforth we work in (S(K ), σ).
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A. Polynomial solutions

Given: L ∈ K [n]〈σ〉, L 6= 0

Find: a basis of the space {y ∈ K [n]; Ly = 0}

Outline of algorithm

1 Find an upper bound for deg y .
2 Use the method of undetermined coefficients.
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B. Rational solutions

Given: L ∈ K [n]〈σ〉, L 6= 0

Find: a basis of the space {y ∈ K (n); Ly = 0}

Outline of algorithm

1 Find a universal denominator for y .
2 Find polynomial solutions of the equation satisfied by the

numerator of y .
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C. Hypergeometric solutions

Given: L =
∑d

k=0 pk σk ∈ K [n]〈σ〉, L 6= 0

Find: a generating set for Lin({y ∈ H(K ); Ly = 0})

Outline of algorithm

1 Construct the Riccatti equation for r = σy
y ∈ K (n):

d∑
k=0

pk

k−1∏
j=0

σjr = 0 (2)
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C. Hypergeometric solutions

2 Use the ansatz
r = z a

b
σc
c

with z ∈ K ∗, a, b, c ∈ K [n] monic,
a, c coprime, b, σc coprime, a, σkb coprime for all k ∈ N:

d∑
k=0

zkpk

(k−1∏
j=0

σja
)(d−1∏

j=k

σjb
)

σkc = 0 (3)
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C. Hypergeometric solutions

3 Construct a finite set of candidates for (a, b, z) using the
following consequences of (3):

a | p0,

b |σ1−dpd ,∑
0≤k≤d

deg Pk =m

lc(Pk)zk = 0

where Pk = pk

(∏k−1
j=0 σja

)(∏d−1
j=k σjb

)
,

m = max0≤k≤d deg Pk .
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C. Hypergeometric solutions

4 For each candidate triple (a, b, z), find polynomial
solutions c of the equation

d∑
k=0

zkPk σkc = 0.
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C. Hypergeometric solutions

Example
(AMM problem no. 10375) Solve

yn+2 − 2(2n + 3)2yn+1 + 4(n + 1)2(2n + 1)(2n + 3)yn = 0.

p2(n) = 1
p1(n) = −2(2n + 3)2

p0(n) = 4(n + 1)2(2n + 1)(2n + 3)
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C. Hypergeometric solutions

1 Riccatti equation:

p2(n) r(n + 1)r(n) + p1(n) r(n) + p0(n) = 0

2 plug in the ansatz:

z2 p2(n) a(n + 1) a(n) c(n + 2)
+ z p1(n) a(n) b(n + 1) c(n + 1)
+ p0(n) b(n + 1) b(n) c(n) = 0
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C. Hypergeometric solutions

3 candidates for (a, b, z):
a(n) | 4(n + 1)2(2n + 1)(2n + 3)

b(n) | 1

Take, e.g., a(n) = (n + 1)(n + 1
2) and b(n) = 1.

z2 − 8z + 16 = (z − 4)2 = 0

Take z = 4.
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C. Hypergeometric solutions

4 equation for c :

(n + 2)c(n + 2)− (2n + 3)c(n + 1) + (n + 1)c(n) = 0

Polynomial solution: c(n) = 1

r(n) = z a(n)

b(n)

c(n + 1)

c(n)
= 4(n + 1)

(
n +

1
2

)
yn+1

yn
= r(n) = (2n + 1)(2n + 2) =⇒ yn = C(2n)!
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