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Summation and recurrences

Sni1—Sp=1tn; S0 =0

0

tn5n+2_(tn+ tn—|—1)5n+1+tn—|—15n - 0; S0 = 07 s1 =1t
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What is a solution?

Representation of sequences

B recursive: ag, ai,...,aq4_1 given,
a, = F(an-1,an-2,...,a0,n) forn>d
m explicit: a,="f(n) forn>0

m by generating function:

Gi(x) = ianx"
n=0

Marko Petkovsek On Solutions of Recurrences |



What is a solution?

m recursive: ag = 0, a; = 1,

a, = 2a,_1—a,—p, forn>?2
m explicit: a,=n forn>0

m by generating function:
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C-recursive sequences

Notation:

K ... algebraically closed field of characteristic 0

Definition
A sequence (a,)2, € K" is C-recursive if there are d € N
and constants ¢j, ¢, ..., ¢4 € K, ¢4 # 0, such that

a, = CGap_1+ CGap2+ -+ Cqan_d

for all n > d.
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C-recursive sequences

Let (a,)2%, € KN and G,(x) = > 02 anx".

The following are equivalent:

(an)o2, is C-recursive,

an = Z Pi:(n)a! where P; € K[n] and «; € K,
i=1

Ga(x) = % where P, Q € K[x], deg P < deg Q and
Q(0) # 0.
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C-recursive sequences

C-recursive sequences are closed under the following binary
operations (a, b) — c:

addition: ¢, = a, + b,
Hadamard (termwise) multiplication: ¢, = anb,
Cauchy multiplication (convolution): ¢, =" ; aib,_;

interlacing:  {(co, c1,C2,C3,...) = (a0, bo, a1, by, ...)

These operations extend naturally to an arbitrary nonzero
finite number of operands.
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C-recursive sequences

C-recursive sequences are closed under the following unary
operations a — C:

scalar multiplication: ¢, = A\a, (A € K)
(left) shift: ¢, = api1

indefinite summation: ¢, =Y \_, a
multisection: ¢, = agnr (kK €N, 0 <r < k)
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C-recursive sequences

ma, = n+1is C-recursive,

1 .
O et = is not C-recursive.
+1

Question: When are a and 1/a are both C-recursive?
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C-recursive sequences

A sequence a € KN is geometric if ag # 0 and 3q € K*:

a, = (dap1

for all n > 1 (equivalently: a, = ap q" for all n > 0).

a geometric = a ! geometric

(Larson & Taft, 1990) Sequences a and 1/a both C-recursive
<= a is the interlacing of one or more geometric sequences.
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P-recursive sequences

A sequence (a,)%2, € K" is P-recursive if there are d € N
and polynomials po, p1, ..., ps € K[n], ps # 0, such that

pa(n)antd + pa—1(n)antda—1+ -+ po(n)a, = 0
for all n > 0.

A f.p.s. f(x) € K[[x]] is D-finite if there are d € N
and polynomials qo, g1, - .., q4 € K[x], g4 # 0, such that

qa(x)F D (x) + qa_1()F UV (x) + - + () (x) = 0.
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P-recursive sequences

Let (an)2y € KN and G,(x) = > o2 anx".

The following are equivalent:
(an)$2, is P-recursive,
Ga(x) is D-finite.
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P-recursive sequences

P-recursive sequences are closed under the following
operations:

addition
Hadamard multiplication

oI

Cauchy multiplication
interlacing

B

scalar multiplication
shift
indefinite summation

&

~ o

multisection
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P-recursive sequences

m a3, = 2"+ 1is P-recursive (even C-recursive),
b = AT = e s i P
B by = A = s not P-recursive.

Sketch of proof:

o o0 Xn
G, = b,x" =
radius of convergence:
1 o
r = = limv2r+1 = 2

limsup,,_,o /| bal oo
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P-recursive sequences

Go(2x) = 202”“ Z( )
Go2x) = 1o~ Gix) (1)
x) = —— — Gp(x
b 1 x b
x =1 ﬁ singular, Gp, regular = G, singular at x = 2
X =2 ﬁ regular, G, singular = G, singular at x = 4

x =4 ﬁ regular, G, singular = G, singular at x = 8
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P-recursive sequences

By induction on k: Gp(x) singular at x = 2% for all k € N
—> G, not D-finite
= b not P-recursive O

Question: When are a and 1/a are both P-recursive?

A sequence a € KN is hypergeometric if:
INeN: a,#0foralln>N,
Ip,q € K[n] \ {0}:

p(n) aps1+q(n)a, = 0

for all n > 0.

Marko Petkovsek On Solutions of Recurrences |



P-recursive sequences

a hypergeometric = a~! hypergeometric

(Singer, 1997) Sequences a and 1/a both P-recursive <=
a is the interlacing of one or more hypergeometric sequences.

Notation:

H(K) ... hypergeometric sequences in K
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P-recursive sequences

Solving linear recurrences
with polynomial coefficients

Given: d € N and pg, p1,...,pq € K[n], pg # 0

Find: all nice solutions a € KN of

pa(n)antd + pa—1(n)anta—1+ -+ po(n)a, = 0
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P-recursive sequences

n

P-recursive: Z (2)2 (n:k)z

‘ k=0

Liouvillian: n!!

n
d'Alembertian: n!z k

_— <

hypergeometnc n! quasirational: == +1
rational: Xecursve n2"+1
ponnomlaI. n+1 geometric: 2"
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Recurrence operators

Notation:

E: KN — KN (left) shift operator,
(Ea), = ann1 application of E

(EXa), = anx (k€N)

Given d € N and pg, p1,...,pqg € K[n], ps # 0:

L: KN — KN linear recurrence operator,

L = Zzzopk EX

(La), = ZZ:O pk(n) ansk  application of L
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Recurrence operators

Notation:

K[n](E) ... algebra of linear recurrence operators
with polynomial coefficients

Commutation rule for composition of operators:

E-p(n) = p(n+1)E

> pu(m)E* D qi(n)E = ZZpk (n)q;(n + k)E7*

k=0 j=0 k=0 j=0
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Difference rings

A difference ring is a pair (K, o) where:

m K is a commutative ring with multiplicative identity,
m o: K — K is aring automorphism.
If, in addition, K is a field then (K, o) is a difference field.

Example

m (K[x],0) with ox = x + 1, 0| = idk is a difference ring.

m (K(x),0) with ox = x + 1, 0|k = idk is a difference field.

m (KN E) where E : {(ag,a1,az,...) — (a1, a,as...) is not
a difference ring.
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Difference rings

For a, b € K" define:

a~b < dINeN:Vn>N: a,=b,

Notation:
S(K) = KN/~ ... ring of germs of sequences
0:8(K)— S(K) ... unique automorphism of S(K)

defined by cop =¢o E

(S(K), o) is a difference ring.
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Difference rings

ma=0inS(K) <= a,=0 forall large enough n

ma=binS(K) <= a,= b, forall large enough n
m K[n|, K(n), H(K) naturally embed into S(K)

Henceforth we work in (S(K), o).
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A. Polynomial solutions

Given: L€ K[n](o), L#0

Find: a basis of the space {y € K[n]; Ly =0}

Outline of algorithm

Find an upper bound for deg y.
Use the method of undetermined coefficients.
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B. Rational solutions

Given: L€ K[n](o), L#0

Find: a basis of the space {y € K(n); Ly =0}

Outline of algorithm

Find a universal denominator for y.

Find polynomial solutions of the equation satisfied by the
numerator of y.
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C. Hypergeometric solutions

Given: L= pco* e Kln(o), L#0

Find: a generating set for Lin({y € H(K); Ly =0})

Outline of algorithm

Construct the Riccatti equation for r = 2 € K(n):

d k-1
Z Pk H olr =0 (2)
k=0 j=0
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C. Hypergeometric solutions

Use the ansatz
aoc

= Z——
b c
with z € K*, a, b, c € K[n] monic,
a, ¢ coprime, b, oc coprime, a,c¥b coprime for all k € N:

d k-1 d—1
szpk Haja Hajb okc = 0 (3)
k=0 j=0 =k

r
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C. Hypergeometric solutions

Construct a finite set of candidates for (a, b, z) using the
following consequences of (3):

l3|Po,

m b|otpy,

> le(P)Zf =0

0<k<d
deg Py=m

where P, = py (HJ o afa> (H )

m = maxo<k<q deg Px.
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C. Hypergeometric solutions

@ For each candidate triple (a, b, z), find polynomial
solutions ¢ of the equation

d
g Z“P,okc = 0.
k=0
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C. Hypergeometric solutions

(AMM problem no. 10375) Solve

Yoz — 220+ 3)2yne1 + 4(n +1)2(2n +1)(2n + 3)y, = 0.

p2(n) =1
pi(n) = —2(2n+3)?
po(n) = 4(n+1)*2n+1)(2n+3)

Marko Petkovsek On Solutions of Recurrences |



C. Hypergeometric solutions

Riccatti equation:

pa(n) r(n+1)r(n) + pi(n)r(n) + po(n) = O

plug in the ansatz:

22 pa(n) a(n+1)a(n) c(n+2)
+ z p(n) a(n)b(n+1) c(n+1)
+ po(n) b(n+1)b(n) c(n) = 0
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C. Hypergeometric solutions

candidates for (a, b, z):
m a(n)|4(n+1)*(2n+1)(2n + 3)
= b(n)|1
Take, e.g., a(n) = (n+1)(n+ %) and b(n) = 1.
w2z 8z+16 = (z—4)2 = 0

Take z = 4.
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C. Hypergeometric solutions

equation for c:
(n+2)c(n+2)—(2n+3)c(n+ 1)+ (n+1)c(n) = 0

Polynomial solution: c¢(n) =1

= zﬂ—c(nqu) = 4(n n 1
r(n) = FORED) 4( +1)( +2>

y;“ =r(n)=@n+1)(2n+2) = y,= C(2n)!
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