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Examples

-1 = r-(z2—-1) = z-(z+1)-(z—1)
i —1 = (22+1)-(22-1)
= (22+1)-(z+1)-(z—1) over Q

= (z+i)-(z—i)-(z+1)-(x—1) overC

Common divisors of 2% — 1 and 23 — z:

L, z+1, z2—1, (z+1)(z—1) =2? — 1 = ged(z* — 1,23 — 2)
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Definitions
(R, +,0,-,1) commutative ring (often write abfor a- b= b- a)

m Rintegral domain: a-b=a-¢ = a=0o0orb=c
(cancellation law)
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Definitions

(R, +,0,-,1) commutative ring (often write abfor a- b= b- a)

m Rintegral domain: a-b=a-¢ = a=0o0orb=c
(cancellation law)

B RF={u€e R:3ve Rwithu-v=1} (group of units)
Notation: v = v~}

m o€ R\ R*irreducible: a = bc = b€ R*orce R*
ma|b:< dcwithac=1b

m c greatest common divisor (GCD) of a and b:
claandc|bandVd (d|aandd|b) = d|c
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Unique factorization domains

ma~b:< albandb|a < Juec R a=ub
(a and b are associates)
Exercise: all units are associates
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Unique factorization domains

ma~b:< albandb|a < Juec R a=ub
(a and b are associates)
Exercise: all units are associates (Proof: u = ab™!)

m R unique factorization domain (UFD): R integral domain and
Va € R\{0} Ju € R p1,..., prirreducible with a = up; - - - p,

andif a =wvq --- ¢gswithv € R*and ¢, ..., ¢s irreducible,
then r= sand p; ~ q1,..., pr ~ ¢, (up to reordering)

m Given the first condition, the second one is equivalent to the
existence of a GCD forall a, b € R
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UFD examples

m ZisaUFD with Z* = {—1,1};thusa ~ b <= a = £b.
Irreducible elements: prime numbers and their negatives.
All irreducible factorizations of 6:

6=1-2-3=1-(-2)-(-3)=-1-2-(=3)=—-1-(-2)-3

—2 and 2 are all the GCDs of 4 and 6.
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UFD examples

m ZisaUFD with Z* = {—1,1};thusa ~ b <= a = £b.
Irreducible elements: prime numbers and their negatives.
All irreducible factorizations of 6:

6=1-2-3=1-(-2)-(-3)=-1-2-(=3)=—-1-(-2)-3

—2 and 2 are all the GCDs of 4 and 6.

® Q,R,C, more generally any field F'is a UFD with F* = F'\ {0}
and no irreducible elements.

® The univariate polynomail ring Q[z] is a UFD. More generally, a
polynomial ring R = Flxy, ..., ] in nvariables over a UFD F'is
a UFD, with R* = F*. In C[z], the irreducible elements are
exactly the linear polynomials.
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A non-example
R =7Z[v—5] = {a+ bV5i: a,b € Z} is not a UFD.
® Aunit u € Rhas |ju| = a® + 5b* = 1;thus R* = {—1,1}.
m 2,3and 1 £ /5iare all irreducible and
2-3=6=(1+V5i)(1—V5i)
are two non-associated factorizations into irreducibles.
m The common factors of a = 6 and b = 2 + 2v/5i are
{-1,1, =2, 2, 1+ V5i, =1 —V/5i},
and hence a and b do not have a GCD.
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Units and normalization

It is convenient to have a normalized irreducible factorization and a
function ged and not have to worry about associates, so we pick a
normal form.

B a € Zisnormalized <— a > 0.
ged(a, b) is the unique nonnegative GCD of a and b.
The normalized irreducible factorization of a # 0 is
a= upy---prsuchthatu=+1and pq,...,p-> 1areprime
numbers.
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Units and normalization

It is convenient to have a normalized irreducible factorization and a
function ged and not have to worry about associates, so we pick a
normal form.

B a € Zisnormalized <— a > 0.
ged(a, b) is the unique nonnegative GCD of a and b.
The normalized irreducible factorization of a # 0 is
a= upy---prsuchthatu=+1and pq,...,p-> 1areprime
numbers.

B Let F'be afield. a € F[z]\ {0} is normalized <= ais monic,
i.e., has leading coefficient 1.
ged(a, b) := unique monic GCD of nonzero polynomials a and b.
The normalized irreducible factorization of a # 0 is
a=upy ---prsuchthat u € F\ {0} and py, ..., p, are monic
(non-constant) irreducible polynomials.
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Coefficient domains

Remainder of this tutorial: polynomial GCDs and factorization.
(Integer GCD algorithms are similar; integer factorization is much
harder.)

= Q
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Coefficient domains

Remainder of this tutorial: polynomial GCDs and factorization.
(Integer GCD algorithms are similar; integer factorization is much
harder.)

mQ
m finite field IF, where pis a prime number; “integers modulo p"
m algebraic extensions, e.g., Q[7] (Gaussian integers)

m transcendental extensions by ““parameters", e.g., Q(¢) (rational
functions in t). Expressions containing only parameters are
considered ““constants' (units).
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Cost models

Ffield, R = Flz1, ..., x,]
Model for cost analysis of algorithms in R: arithmetic RAM

m Sequential algorithms (parallel algorithms possible by
considering length of critical path instead of total cost)
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Cost models

Ffield, R = Flz1, ..., x,]
Model for cost analysis of algorithms in R: arithmetic RAM

Sequential algorithms (parallel algorithms possible by
considering length of critical path instead of total cost)

Unit cost for one arithmetic operation 4, —,-, or ~1in F
Variables 1, ..., z, are just ““placeholders" and multiplication
by a product of variables is “*for free"

If = Qor F'=TF,, the word RAM model also assigns a
non-trivial cost to arithmetic operation in F, depending on the
size (number of machine words) of the operands in memory

Cost for zero testing, memory management, loop index
arithmetic etc. is considered non-dominant and therefore
ignored
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Classical vs fast arithmetic

m Classical" algorithms are typically quadratic in the input size.
E.g., multiplication of two polynomials of degree < nin F'[z]
takes (n + 1)2 multiplications in Fand n? additions, in total
2n? 4+ 2n — 1 € O(n?) arithmetic operations in F.
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Classical vs fast arithmetic

“Classical" algorithms are typically quadratic in the input size.
E.g., multiplication of two polynomials of degree < nin F'[z]
takes (n + 1)2 multiplications in Fand n? additions, in total
2n? 4+ 2n — 1 € O(n?) arithmetic operations in F.
“Asymptotically fast" algorithms exist and take only O(nlogk n)
operations for some k € N.
Notation: multiplication time M(n) = number of arithmetic
operations in F'sufficient to multiply two univariate polynomials
of degree < n.
Classical arithmetic: M(n) = 2n? +2n+ 1 € O(n?)
Fast arithmetic: M(n ) € O(nlog nloglog n)

(Schénhage & Strassen)
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Basic univariate polynomial arithmetic cost

f, g € Fz] polynomials, deg g = m < n = deg f, a € F constant

Operation Classical Fast
f(a) 2n— 2 2n— 2
f+g m+1 m+1
fg 2mn+ O(n) M(n)

fawog  O(m(n—m)) OM(n—m))
fremg  O(m(n—m))  OM(n))

Note: f(a) = frem (z— a)
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Euclidean algorithm |

It is straightforward to compute GCDs from factorizations, but there
is a much more efficient and famous algorithm first introduced for
integers.

Example: Compute the (monic) gcd of 2° + 23 4 22 — 2z and

z* — 22 + 2. Iterated division with remainder:

P34+ —20 = z- (2t — 2%+ 2)+ 223 — 21,

1
gt — 2?4 = 5x-(2x3—2x)+x,

22 — 22 = (222 —2) 240,
r = ged(a® + 23 4+ 22 — 22, 2% — 2 + 1)
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Euclidean algorithm Il

2342220 = z- (2 — 2%+ 2)+ 227 — 2z,
1
et — 2?4 = 5z-(2x372$)+x,
223 — 2z = (22% —2)-z+0,

r = ged(z® + 2% + 2% - 22,2% — 2% 4+ 2)

Observations:

m Even though the input polynomials are monic, the quotients and
remainders may not be.
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1
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Euclidean algorithm Il

2342220 = z- (2 — 2%+ 2)+ 227 — 2z,
1
et — 2?4 = §$-(2x372$)+x,

223 — 2z = (22% —2)-z+0,
r = ged(z® + 2% + 2% - 22,2% — 2% 4+ 2)

Observations:

m Even though the input polynomials are monic, the quotients and
remainders may not be.

m Even though the input polynomials have integer coefficients, the
guotients and remainders may have denominators.

m The degree can decrease by more than 1 in a single step.
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Euclidean algorithm Il

Input: f, g € Fz]for afield F'
Output: ged(f, g) € Fz]

while g £ 0 do

(5) = ()

return f

Is this correct?
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Euclidean algorithm IV

Input: f, g € Fz]for afield F'
Output: ged(f, g) € Fz]

8 () (1)
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Input: f, g € Fz]for afield F'
Output: ged(f, g) € Fz]

8 () (1)

for { > 1 while r; # 0 do
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Euclidean algorithm IV

Input: f, g € Fz]for afield F'
Output: ged(f, g) € Fz]

(n)=(2)
71 g
for { > 1 while r; # 0 do

Titr1 < Tij—1 rem ry
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Euclidean algorithm IV

Input: f, g € Fz]for afield F'
Output: ged(f, g) € Fz]

(n)=()

[ g

for { > 1 while r; # 0 do
Titr1 < Tij—1 rem ry

Ti—1

IC(Ti—l)

return

Remark: 1c(0) := 1, deg0 := —o0

19/82



Cost

fge€ Flz],n=degf>degg=m, f#0
Let n; = deg r; for 1 < ¢ < ¢such that 1y 1 = 0.

Cost for division with remainder in step 3: O(n; - (ni—1 — n;))
Cost for normalization in step 4: ny

Total cost: ny + Z O(ni(ni—1 — n;)) = O(nm)

1<i<t

20/82



Variants

m Monic EA: normalize remainder at every step, not just at the
end: still O(nm) but smaller coefficients
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Variants

m Monic EA: normalize remainder at every step, not just at the
end: still O(nm) but smaller coefficients

m Asymptotically fast EA: O(M(n ) log n) (divide-and-conquer,
Knuth, Schonhage, Moenck, ...)
If = Qand f, g € Z[z] (improved cost in the word RAM model):
m Subresultant algorithm: fraction-free (Collins)

m Modular algorithms (Brown, Collins, ...). We'll come back to this
later.
Similar if F'is a rational function field and f, g are multivariate
polynomials.

21/82



Extended Euclidean Algorithm

Input: f, g € Fz]for afield F'
Output: 7 € F[z] such that r = ged(f, g)

(n)<(3)
71 g
for { > 1 while r; # 0 do

Qi < Ti—1 quo Ty

Tip1 < Tio1 — ¢ (= i1 rem ry)

Ti—1

return
c(ri—1)
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Extended Euclidean Algorithm

Input: f, g € Fz]for afield F'
Output: 7, s, t€ F[z] such that sf 4+ tg = r = gcd(f, 9)

T S 1 0
()= () (8) = () (5) < (V)
for { > 1 while r; # 0 do
Qi < Ti—1 quo Ty
Tip1 < Tio1 — ¢ (= i1 rem ry)

Sit1 < Si—1 — QiS;
B tiy1 < tio1— qit;

rie1 Si—1 ti1
le(ri1)  le(ri—1) ’ le(ri—1)

return
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Extended Euclidean Algorithm

Input: f, g € Fz]for afield F'
Output: 7, s, t€ F[z] such that sf 4+ tg = r = gcd(f, 9)

T s 1 0
()= (3) =) (0)= (1)
for { > 1 while r; # 0 do
Qi < Ti—1 quo Ty
Tip1 < Tio1 — ¢ (= i1 rem ry)

Sit1 < Si—1 — qiSi
B tit1 <t — gt

Ti-1 Si—1 tia1
le(ri1)  le(ri—1) ’ le(ri—1)
Cost: O(nm)

return
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Example (cont'd)

i qi T S t;
0 2+ 23 422 — 22 1 0
1 T zt -2+ 0 1
2 %x 223 — 22 1 —x
3| 222 -2 x ~1z 372+ 1
4 0 z3—2+1 —-zt—22—2+2

B { = #quotients = 3
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Example (cont'd)

i qi T S t;
0 2+ 23 422 — 22 1 0
1 T zt -2+ 0 1
2 %x 223 — 22 1 —x
3| 222 -2 x ~1z 372+ 1
4 0 22—z+1 —zt—22—2+2
B { = #quotients = 3

m ged(f, g9) = D= —%x-f—i— <%$2+1) cg= STSf—i- tng

1
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Example (cont'd)

i % T 8 ti
0 0+ 23+ 2% — 22 1 0
1 T zt -2+ 0 1
2 %x 223 — 22 1 -
3] 222 -2 T —1z 12241
4 0 22—z+1 —zt—22—2+2
B { = #quotients = 3

@ sed(fig) = 2 =a= o ft (307 41) 9= Bp By

m Invariant I: r; = s;f+ tigfor0 < i</ +1
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Example (cont'd)

i % T 8 ti
0 5+ 23 + 2% — 22 1 0
1 T gt — 12+ 0 1
2 %x 213 — 2z 1 -
3| 227 -2 z —ly 132 11
4 0 #2—2+1 —2*—22—z+2

B { = #quotients = 3
T3

_ o 1 1 2 83 t3
lgcd(f,g)—T_x— 2x f—i—<2x +1) g= 1f+1g

m Invariant I: r; = s;f+ tigfor0 < i</ +1
B Invariantll: degs; = degg—degr;_1forl < i< /+1
anddegt; =degf—degr,_1forl <i</{+1
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Example (cont'd)

i qi T 8; i
0 25+ 13 4 22 — 21 1 0
1 T zt -2+ 0 1
2 %x 223 — 22 1 —x
3| 2z2—-2 T —%:17 %x2+1
4 0 22—z+1 —zt—22—2+2
B { = #quotients = 3

m ged(f,g) = % =z= —%x-f—i— <%$2+1) cg= STSf—i- tng

m Invariant I: r; = s;f+ tigfor0 < i</ +1

B Invariantll: degs; = degg—degr;_1forl < i< /+1
anddegt; =degf—degr,_1forl <i</{+1

m Last row: cofactors w41, vgy1 such that
f= (1) uyrpand g = (1) vp417

23/82



Application I: modular inverses

Given f, g € F[z]\ {0} with firreducible and deg g < deg f, compute
h= g !'modf

i.e., h € Flz]withdegh < deg fand f| (gh— 1).

Solution: Since fis irreducible, ged(f, g) = 1 = sf+ tg,so h = t.

This has applications, e.g., in modular arithmetic (later).
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Application II: partial fractions

Given f, g, € F[z]\ {0} with ged(f, g) = 1 and
degr < deg f+ deg g, find u, v € F[z] with deg u < deg f,

deg v < deg g, and
roou v

fo f g
Solution: ged(f, g) = 1 = sf+ tg, so r = rsf+ rtg. Let ¢ = s quo g,
v=rsrem g = rs— qgand u = rt+ ¢f, then

9 g

o7 e Gy AR

This has applications, e.g., in symbolic integration (Hermite).

roort rs_<£t qf)+(rs qg)_u v
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Application IlI: rational interpolation

Given a collection of n points (z;, ;) € F?, find a rational function
p =%, with u,v € F[z]such that deg u < kand degv < n — k, that
u(z;)

v(z;)

interpolates all the points: p(z;) = =yjforl <j<n.

Solution: f= (z— z1) --- (z — x,), g = Lagrange interpolation
polynomial. In the EEA for fand g, stop at i such that
degr; < k< degr;_1. Then

ri(z;) = si(zj) () + ti(z))9(z)) = ti(z))y;,

so p = u/v = r;/t;is a solution unless t;(x;) = 0 for some j (in which
case no solution exists).

This has applications, e.g., in bivariate gcd computation (later).
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Application IV: Padé approximation

Given a sufficiently smooth function ¢ : F'— F), find a rational
function p = %, with u, v € F'[z] such that deg u < kand

deg v < n — k, such that the Taylor expansions of cand patz =0
agree for the first nterms: p(0) = ¢ (0) for0 < j < n

Solution: f = 1", g = nth Taylor polynomial of c. In the EEA for fand
g, stop at isuch thatdeg r; < k < degr;_1. Then p = u/v = r;/t;is
a solution since

90 = ()"0 = (7)) + 470 = 90,

unless ¢;(0) = 0 (in which case no solution exists).

This has applications, e.g., in coding theory (Berlekamp-Massey

algorithm) and bivariate factorization (later).
27/82



Asymptotically fast EEA

It is not possible to compute all r;, s;, t; for 1 < ¢ < {intime

O(M(n) log n), but all the previous applications require is r;, s;, t; for
one specific value of ¢ (e.g., ¢ = £), and that can be computed in time
O(M(n)logn).
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Modular arithmetic

Let p > 1 be a prime number.
m F,:={0,...,p— 1} with addition (a + b) rem p, negation
—a = p— a(for a # 0), and multiplication (@ - b) rem p.
Examples: 3+5=1,—2=5,and3-5=1inTF7.
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Modular arithmetic

Let p > 1 be a prime number.
m F,:={0,...,p— 1} with addition (a + b) rem p, negation
—a = p— a(for a # 0), and multiplication (@ - b) rem p.
Examples: 3+5=1,—2=5,and3-5=1inTF7.
m Every nonzero element a € [F), has a multiplicative inverse: EEA
in Z computes 1 = sp + ta, so ta rem p = (sp + ta) rem p = 1.
Thus: I, is a field.

m Example: gcd(7,3) =1=1-7-2-3,5037!' = -2 =5inFy.
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Modular arithmetic

Let p > 1 be a prime number.

m F,:={0,...,p— 1} with addition (a + b) rem p, negation
—a = p— a(for a # 0), and multiplication (@ - b) rem p.
Examples: 3+5=1,—2=5,and3-5=1inTF7.

m Every nonzero element a € [F), has a multiplicative inverse: EEA
in Z computes 1 = sp + ta, so ta rem p = (sp + ta) rem p = 1.
Thus: I, is a field.

m Example: gcd(7,3) =1=1-7-2-3,5037!' = -2 =5inFy.

m Cost for one arithmetic operation in I}, in word RAM model:

classical asymptotically fast
+/— O(logp)  O(logp)
O(log” p)  O(M(log p))
~' O(log’p)  O(M(log p) loglog p)
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Fermat's Little Theorem

a’ = aforallacF,
Proof: Induction on a and the fact that (?) is divisible by p for
0<ji<p.

Note: The polynomial 2P — z € [F,[z] is not the zero polynomial but
vanishes at all points a € [F),.

Exercise: Devise a method to compute inverses in [F}, using FLT
instead EEA.
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Fermat's Little Theorem

a’ = aforallacF,

Proof: Induction on a and the fact that (?) is divisible by p for
0<ji<p.

Note: The polynomial 2P — z € [F,[z] is not the zero polynomial but
vanishes at all points a € [F),.

Exercise: Devise a method to compute inverses in [F}, using FLT
instead EEA.
Answer: if a = 0then a? ! =1,s0a ! = a?2.
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Univariate factorization over finite fields

f€ Fplz] monic, degf=n>1

m Squarefree factorization: f= f{ - - - f* such that f; monic
squarefree (i.e., ¢* 1 f; for all nonconstant polynomials

g € Fplz]) and ged(f;, fj) = 1 for i # j.
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Univariate factorization over finite fields

f€ Fplz] monic, degf=n>1
m Squarefree factorization: f= f{ - - - f* such that f; monic
squarefree (i.e., ¢* 1 f; for all nonconstant polynomials
g € Fplz]) and ged(f;, fj) = 1 for i # j.
m Distinct-degree factorization: g monic squarefree, g = ¢1--- gn

such i | g; = deg h = 7 for all nonconstant polynomials
h € F,[z] (equal-degree polynomial).
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Univariate factorization over finite fields

f€ Fplz] monic, degf=n>1

m Squarefree factorization: f= f{ - - - f* such that f; monic
squarefree (i.e., ¢* 1 f; for all nonconstant polynomials
g € Fplz]) and ged(f;, fj) = 1 for i # j.

m Distinct-degree factorization: g monic squarefree, g = ¢1--- gn
such i | g; = deg h = 7 for all nonconstant polynomials
h € F,[z] (equal-degree polynomial).

m Equal-degree factorization: h monic squarefree equal-degree

polynomial of degree n = ki, compute the monic irreducible
factors hq, ..., h; of degree isuch that h = hy - - - hy.
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Meta-algorithm

SQF

DDF

]'T

EDF
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Factorization in various domains

/\

P21, s Tn)
/ \
Fp(a)[z1, ..., 2] Qlat, ...,z
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Squarefree factorization

Ffield (finite or not), f € F'[z] monic with deg f= n > 1 and
squarefree decomposition f= f{ --- f*. (Also assume n > pif
F, C F.) Then

_of _

fl=g =R i W fat o nfi faf)

g

The assumptions about the squarefree decomposition imply that
ged(fi, g) = 1 for all 4, and therefore

ged(ff) =R ft
Let h = fi - - - f,,, the squarefree part of f. Then
W=Hfffot ..o+ hfoifd

and
fi = ged(h, g — il')
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Example

Let f= 2%+ 23 = 23(2+ 1). Expecttofind fy = z+ 1, f3 = 7, and
fh=h=1
m [ =423 + 322
ged(f, f') = «°
g=1f"/ged(f.f') =4z+3
h=f/ged(ff) = 2%+
N =2z+1
ged(h,g—F) = ged(2? + 2,22+ 2) =2+ 1=f
ged(h,g—2K) = ged(z? +2,1) =1=f,
d(h g—3K) =gcd(2? +z,-21)=z=f3
cd(h, g —4l) = ged(2? + 7,4z — 1) =1 = f;
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Yun's algorithm

Input: f€ Flz]\ {0} monic,degf = n
Output: Monic squarefree decomposition f= f{ - - - f7

7 !

A NV —

0 d )y " gl
H fori=1,....n do

gi < gi1 — I
fi — ng(ha gi)

A return fi, fo, ..., fn
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Yun's algorithm

Input: f€ Flz]\ {0} monic,degf = n
Output: Monic squarefree decomposition f= f{ - - - f7
f f
ot e, B
ged(f, ') ged(f, ')
fori=1,...,nwhile h # 1 do
gi < gi-1— W
fi — ng(ha gi)
h
he =, gie 7
Ji i
A return fi, fo,...,1,1

Cost dominated by step 1: O(n?) classical / O(M(n ) log n) fast
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Distinct-degree factorization

Fermat's Little Theorem: z¥ — z = H (z—a) = H w
aclFy, w monic irreducible
degw=1
Generalization (GauRB): For¢ e N, 2P — 2= H w
w monic irreducible
(deg w)|i

Algorithm: Given monic squarefree g € Fy[z],
fori=1,2,... compute gcd(xpz — x, g) and remove it from ¢
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Gaul}' DDF algorithm

Input: g € Fplz] \ {0} monic squarefree, deg g = n
Output: Monic distinct-degree decomposition g = g1 --- g,
ag < T
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Gaul}' DDF algorithm

Input: g € Fplz] \ {0} monic squarefree, deg g = n

Output: Monic distinct-degree decomposition g = g; - -

ag < T
for ¢ > 1 while deg g > 2ido

“On
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Gaul}' DDF algorithm

Input: g € Fplz] \ {0} monic squarefree, deg g = n

Output: Monic distinct-degree decomposition g = g; - -

ag < T
for ¢ > 1 while deg g > 2ido
a; < af_jrem g (=P rem g)

“On
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Gaul}' DDF algorithm

Input: g € Fplz] \ {0} monic squarefree, deg g = n
Output: Monic distinct-degree decomposition g = g1 --- g,
ag < T
for ¢ > 1 while deg g > 2ido
a; af_l remg (= 2P rem q)
9i < ged(g, a; — 2)
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Gaul}' DDF algorithm

Input: g € Fplz] \ {0} monic squarefree, deg g = n
Output: Monic distinct-degree decomposition g = g1 --- g,
ag < T
for ¢ > 1 while deg g > 2ido
a; af_l remg (= 2P rem q)
9i < ged(g, a; — 2)

— ﬁ, a; ¢ a; rem
g Py g
1

39/82



Gaul}' DDF algorithm

Input: g € Fplz] \ {0} monic squarefree, deg g = n

Output: Monic distinct-degree decomposition g = g; - -

ag < T

for ¢ > 1 while deg g > 2ido

a; < af_jrem g (=P rem g)
9i < ged(g, a; — 2)

g<—£, a; < a;rem g
Gi
Aifg=1
thenreturn g1, 92,...,¢i—1, 1, oo ... ,1
elsereturn g1, ¢92,...,9,-1,1,...,1,¢,1,...,1

“On
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Gaul}' DDF algorithm

Input: g € Fplz] \ {0} monic squarefree, deg g = n
Output: Monic distinct-degree decomposition g = g1 --- g,
ag < T
for i > 1 while deg g > 2ido
a+ a_jremg (= 2" rem g)
9i < ged(g, a; — 2)

g<—£, a; < a;rem g
Gi
Aifg=1
thenreturn g1, 92,...,¢i—1, 1, oo ... ,1
elsereturn g1, ¢92,...,9,-1,1,...,1,¢,1,...,1

Step 2 loop invariant:

we Fy[zr]and degw>landw| g = degw > ¢
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Example

letg=125+23—2? —z=a(z+ 1)(z— 1)(2® + 2+ 1) € F7[z].
We expect to find gy = 23 — 2, g3 = 23 + 2+ 1, and
92=91=95 =96 = L.

[ 1 IRl
Hi=1landdegg=62>2-1
a1<—x7remx6—|—x3—m2—x:—x4—|—x3—|—x2
A g+ gedlag — 2,25 +23 —22=2)=2% -2
6 3 2
°+x° —z1°—=x
B g+ =3+ 41,

x3 —zx
a —arremzd +r+1=222-1

i=2anddegg=3<2-2
A returnz3 — 2, 1,23+ 2+1,1,1,1
Best done using MAPLE or other CAS
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Cost analysis

g € Fplz] \ {0} monic squarefree, deg g = n

at most g iterations of:

a; — af_l rem g using square-and-multiply:
O(M(n)log p) / O(n?1log p) classical

gi <+ ged(a; — 7, g): O(M(n)logn) / O(n?) classical

g4 g and a; + a; rem g: O(M(n)) / O(n?) classical

Gi

Total cost: O(nM(n)log(np)) / O(nlog p) classical

Worst case: input is irreducible

41/82



Modular root finding |

p > 2 odd prime,

h=(x—a1) - (z— ay) € Fplz] withn > 1and a; # ajfori#j
Goal: find aq, ..., a,

Fermat's Little Theorem: For ¢ € I,

p—1

O:cp—c:c(cT—l)(cp;;—i—l)

-1 -1
Soeitherc=0orcz =1lorcz = —1, with probabilities % or
F(1— %), respectively.
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Modular root finding Il

p > 2 odd prime,
h=(x—a1) - (z— ay) € Fplz] withn > 1and a; # ajfori#j

Choose b € F,,[z] with deg b < n uniformly at random. By the
uniqueness of Lagrange interpolation, b(a;) is a uniformly random
p—1

element of I, and independent of b(a;) for i # j. Thus b(a;) 2 =1
with probability %(1 — %), and the probability that

p—1

b(a;)"T = b(a))"z forall i, jis

1\ 7 1 1IN\ " 1 1
( ) +2< (1—)> <21—”7+21—“(1—ﬁ)<21—"§7.
j4 2 P P j4 2
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Modular root finding IlI

p > 2 odd prime, b € F,[z],
h=(x—a1) - (z— ay) € Fplz] withn > 1and a; # a;fori# j

Vi b(a;) =0 brem h=0
ged(h, b) = h,
Vi b(a;) #0 ged(h, b) =1,

(b% —1)rem h=0
ged(h, b7 —1) = b'z — 1,
ged(h, 0T —1) = 1.

Vi b(a)'T =1

[

Vi (z) 7é1

Algorithm: Choose b with deg b < n at random and compute

—1
ged(h, b) and ged(h, b2 — 1). This will split h with probability > 1.
Recurse.
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Examples

Let h = 23 — z € Fy[x].
m If b € IF,, then ged(h, b) € {1, h} and ged(h, b2 — 1) € {1, A}.
mIfbe {z,2+1,2— 1}, then ged(h, b) = b splits h.
mIfb=a+2thenged(hb) =1,0"% =03 =23 — 22— 20 +1
and ged(h, b® — 1) = 12 + xsplits h.
m If b= 22+ 1, then gcd(h, b) = 1,
b5 = % = 28 + 32% + 322 + 1 and ged(h, 0° — 1) = h.
mIf b= —22 —1,thenged(h, b) = 1,
s = b3 = —26 — 324 — 322 — land ged(h, b3 — 1) = L.

45/82



Cantor-Zassenhaus algorithm

Input: i € F,[z] monic squarefree with all irreducible factors of
degree 1, where p > 2and 1 < n=degh
Output: The monic irreducible factors hy, ..., h,/; of h

if n = 1 then return h
Choose b € F),[z] with 0 < deg b < n uniformly at random
u < ged(h, b)

if u # 1 then recurse on both v and on % and return the
combined results

—1

v b'T rem h, v < ged(h,v)

B if v € {1, h} then go back to step 2 and repeat

recurse on both vand on % and return the combined results
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Cantor-Zassenhaus algorithm

Root finding algorithm generalizes to equal-degree factorization

Input: i € F,[z] monic squarefree with all irreducible factors of
degree 4, where p > 2and 1 <i | n=degh
Output: The monic irreducible factors hy, ..., h,/; of h
if n = ithen return h
Choose b € Fp,[z] with 0 < deg b < n uniformly at random
u < ged(h, b)
if u #~ 1 then recurse on both v and on % and return the
combin(_ed results
V4 b% rem h, v < ged(h, v)
B if v € {1, h} then go back to step 2 and repeat

recurse on both vand on % and return the combined results
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Cost analysis

p > 2 prime, h € [F,,[z] monic squarefree with all irreducible factors
of degree 7, where 1 < i | n=degh

(similar algorithm for p = 2 exists)

ged(h, b): O(M(n)logn) / O(n?) classical
V4 bpzz;l rem h via square-and-multiply:
O(iM(n ) log p) / O(in?log p) classical
ged(h, v): O(M(n)logn) / O(n?) classical
B Expected number of iterations: < 2
Expected recursion depth: O(log %)

Expected total cost: O(iM(n ) log(np)) / O(in? log(np)) classical

Worst case: ¢ = g
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Probabilistic vs deterministic EDF

m There is no known deterministic algorithm for equal-degree
factorization that runs in time polyonmial in n and log p.

m In fact, there is no known deterministic polynomial time
algorithm for factoring z2 — q, i.e., computing VaeT,,if
acF,isasquareand4 | (p —1).

m Quest for deterministic polynomial time factoring is of purely

theoretical interest; the probabilistic algorithms are highly
efficient in practice.
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Special case: root finding

Input: f€ F,[z] \ {0} monic, where p > 2anddegf =n < p
Output: the distinct roots a4, ..., a, € F, of f
f

9 G117

a < 2P rem g

h <+ ged(a — z, g)

call the Cantor-Zassenhaus algorithm with input hand 7 — 1 and
return its result

(Expected) cost: O(M(n)log(pn)) / O(n?log p) classical
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Special case: irreducibility test

Input: f€ F,[z] \ {0} monic, where p > 2and deg f = n
Output: true if fis irreducible and false otherwise

if gcd(f, f') # 1 then return false
if 22" rem f# x then return false
for every prime divisor d € N of ndo
ag <+ 27" rem f
if gcd(ag — =, f) # 1 then return false
@ return true
Cost: O(nM(n)log(pn)) / O(n?log p) classical
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State of the art: factoring in F))[z]

SQF + DDF + EDF  arithmetic RAM  word RAM

classical Cantor ~ n3logp n?log® p
& Zassenhaus

fast Cantor n?log p n?log? p

& Zassenhaus

von zur Gathen 2 + nlogp n?log p + nlog? p
& Shoup

Kaltofen & Shoup  n!81510g%407 p 1815 ]1ogh407 )
Kedlaya & Umans n'®log p + nlog® p

Ignoring constants and factors log n and loglog p

Main ingredients:
blocking strategy and fast modular composition g(h) rem f

51/82



Outline

Introduction
Univariate GCDs
Univariate factorization over finite fields

Univariate factorization over the integers
m Hensel lifting
m Factor combination

Two or more variables
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From F,[z] to Q[z]

f € Q[z] monic nonconstant squarefree

Main idea:

m Choose “'small" prime p > 2 and factor fin [F,[z]
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f € Q[z] monic nonconstant squarefree

Main idea:
m Choose “'small" prime p > 2 and factor fin [F,[z]

m Lift the factorization to one modulo p* for k large enough
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From F,[z] to Q[z]

f € Q[z] monic nonconstant squarefree

Main idea:
m Choose “'small" prime p > 2 and factor fin [F,[z]
m Lift the factorization to one modulo p* for k large enough

m Combine some modular factors to obtain factors in Q[z]
Remarks:

m Need to choose a “'good" prime p such that it does not divide
the denominator of fand such that fremains squarefree in I [z]
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From F,[z] to Q[z]

f € Q[z] monic nonconstant squarefree

Main idea:
m Choose “'small" prime p > 2 and factor fin [F,[z]
m Lift the factorization to one modulo p* for k large enough

m Combine some modular factors to obtain factors in Q[z]

Remarks:

m Need to choose a “'good" prime p such that it does not divide
the denominator of fand such that fremains squarefree in I [z]

m How large is “‘large enough'?
m How to determine the denominators of the factors?
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Hensel's lemma |

f, 9, h € Q[z] monic, p € N prime not dividing any denominators.
Notation: write f= gh mod p to mean f= ghin F,[z], more
precisely: p | (f— gh).

Hensel's lemma If gcd(g, ) = 1in Fp[z], then for any k € N there
exist monic g, hy; € Q[z] such that

gr = gmod p, hi = hmod p, and f= gh mod pk.
Moreover, gi and hy are unique modulo pk.

Proof: Induction on k.
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Hensel's lemma Il

keN, f, gk, by € Q[z] monic, p € N prime not dividing any
denominators, ged(gx, hx) = 1in Fp[z], and f= gphy mod p*.

Construction of gx41, Ary1:
ex = f— grhk
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Construction of gx41, Ary1:
ex = f— grh
EEA computes s, t € Z[z] such that sg; + thy = 1 in Fp[z]
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Hensel's lemma Il

k€N, f, gk, by € Q[z] monic, p € N prime not dividing any
denominators, ged(gx, hx) = 1in Fp[z], and f= gphy mod p*.

Construction of gx41, Ary1:
e = f— grh
EEA computes s, t € Z[z] such that sg; + thy = 1 in Fp[z]
G = gi + tepand h = hy, + se;,

Then

f—gh=f— grhi — grser — hitey, — steg = (1 — sgx — thy)ey, — ste;

By assumption, p* | eand p | 1 — sgy — thy, and hence p**1 | (f— gh).
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Example

k=1,f=a3+1422 +152+26, gy =2+ 1, hy = 22>+ 2+2,p=3

er = 23 + 1422 + 152+ 26 — (z+ 1) (2% + .+ 2)
= 23 + 1422 + 155+ 26 — (23 + 222 + 32+ 2)
= 1222 + 122+ 24 =3 - (422 + 42+ 8)
xand t = 2 work:
(z+1)+2- (22 +2+2)=32>+3z+4=1mod 3
(z+1)+2- (1222 + 122+ 24) = 2422 + 252+ 49,
= (224 2+2) + 2 (1222 + 122+ 24) = 1223 + 1322+ 252+ 2

S
T
g
h
Check:

f—gh = 23+ 142% + 152+ 26
—(2882° + 612z + 151323 + 131022 + 12752 + 98)
= —9-(322° + 6821 + 16823 + 14422 + 140z + 8)
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Issues

g, h are not monic and their degrees are too high.

Resolution:
g = texquo gy,
Get1 = g+ (teprem g) = gi + tey — g,
b1 = g+ sex + qrhy.

Then g1, hgt1 are monic, deg gx1 = deg gy,

deg hi11 = deg by, and gpi1hyy1 = ghmod p*tl.
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Issues

E g h are not monic and their degrees are too high.

Resolution:
g = texquo gy,
Get1 = g+ (teprem g) = gi + tey — g,
b1 = g+ sep + qrhy.

Then g1, hgt1 are monic, deg gx1 = deg gy,

deg hi11 = deg by, and gpi1hyy1 = ghmod p*tl.
m Coefficient growth.

Resolution: reduce coefficients mod p**!
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Example (continued)

k=1,f=234+1422 + 1520+ 26, g1 =+ 1,y =22 +2+2,p=3

er = 23 + 1422 + 152+ 26 — (z+ 1) (2% + 2+ 2)
=23 + 1422 + 152+ 26 — (2% + 222 + 32+ 2)
= 1222 4+ 12z + 24 = 322 + 3z + 6 mod 32
s = zand t = 2 work:
r-(z+1)+2- (22 +2+2)=322+32+4=1mod 3
g1 =2-(3z24+3xz+ 6) quo =+ 1 = 6z,
g =(r+1)+2 (322 +32+6)—6z- (z+ 1)
=124 13= z+ 4 mod 32,
hy = (22 4+ 1+2) +z- (322 + 32+ 6)+6z- (22 + =+ 2)
=923 + 1022+ 192+ 2= 22 + £+ 2 mod 32

Check: f— gohy = 2°+ 142 + 152+ 26 — (z+4) (2 + 2+ 2)
= 23 4+ 1422 + 152+ 26 — (2 + 522 + 62+ 8)
= 922+ 92+ 18
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Hensel lifting

Input: k€ N, £, g1, 4 € Q[z] monic, p € N prime not dividing any
denominators, gcd (g1, h1) = Lin Fp[z], and f= ¢g1h; mod p
Output: gi, i, € Q[z] monic, g, = g1 mod p, hy, = hy mod p, and
/= grhy mod p

call EEA to compute s, t € Z[z] such that sg; + thy = 1in Fp[z]

59/82



Hensel lifting

Input: k€ N, £, g1, 4 € Q[z] monic, p € N prime not dividing any
denominators, gcd (g1, h1) = Lin Fp[z], and f= ¢g1h; mod p
Output: gi, i, € Q[z] monic, g, = g1 mod p, hy, = hy mod p, and
/= grhy mod p
call EEA to compute s, t € Z[z] such that sg; + thy = 1in Fp[z]
fori=1,...,k—1do
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Hensel lifting

Input: k€ N, £, g1, 4 € Q[z] monic, p € N prime not dividing any
denominators, gcd(g1, 1) = 1inFy[z], and f= g1 7y mod p
Output: gi, i, € Q[z] monic, g, = g1 mod p, hy, = hy mod p, and
f= gihy mod p*

call EEA to compute s, t € Z[z] such that sg; + thy = 1in Fp[z]

fori=1,...,k—1do

e < (f— gihs) rem p't?
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Hensel lifting

Input: k€ N, £, g1, 4 € Q[z] monic, p € N prime not dividing any
denominators, gcd(g1, 1) = 1inFy[z], and f= g1 7y mod p
Output: gi, i, € Q[z] monic, g, = g1 mod p, hy, = hy mod p, and
f= gihy mod p*

call EEA to compute s, t € Z[z] such that sg; + thy = 1in Fp[z]

fori=1,...,k—1do

e < (f— gihs) rem p't?

gi < (te; quo g;) rem p*t!
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Hensel lifting

Input: k€ N, £, g1, 4 € Q[z] monic, p € N prime not dividing any
denominators, gcd(g1, 1) = 1inFy[z], and f= g1 7y mod p
Output: gi, i, € Q[z] monic, g, = g1 mod p, hy, = hy mod p, and
f= gihy mod p*

call EEA to compute s, t € Z[z] such that sg; + thy = 1in Fp[z]

fori=1,...,k—1do

e < (f— gihs) rem p't?

gi < (te; quo g;) rem p*t!

gir1 < (gi + te; — qig;) rem p't1
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Hensel lifting

Input: k€ N, £, g1, 4 € Q[z] monic, p € N prime not dividing any
denominators, gcd(g1, 1) = 1inFy[z], and f= g1 7y mod p
Output: gi, i, € Q[z] monic, g, = g1 mod p, hy, = hy mod p, and
f= gihy mod p*

call EEA to compute s, t € Z[z] such that sg; + thy = 1in Fp[z]

fori=1,...,k—1do

e < (f— gihs) rem p't?

gi < (te; quo g;) rem p*t!

gir1 < (gi + te; — qig;) rem p't1

6| hit1 < (hi + se; + qihi) rem le

59/82



Hensel lifting

Input: k€ N, £, g1, 4 € Q[z] monic, p € N prime not dividing any
denominators, gcd(g1, 1) = 1inFy[z], and f= g1 7y mod p
Output: gi, i, € Q[z] monic, g, = g1 mod p, hy, = hy mod p, and
/= grhy mod p

call EEA to compute s, t € Z[z] such that sg; + thy = 1in Fp[z]

fori=1,...,k—1do

e < (f— gihs) rem p't?

gi < (te; quo g;) rem p*t!

gir1 < (gi + te; — qig;) rem p't1

6| hit1 < (hi + se; + qihi) rem le

return g, hy
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Example (continued)

i=2,f=a+ 1422 + 152+ 26, p =+ 4, ho =22 +2+2,p=3

ey = 23+ 1422 + 152426 — (z+4) (22 + 2+ 2) = 922 + 92+ 18
s = zand t = 2 still work:
z-(z+4)+2- (2?2 +2+2) =322 +62+4=1mod 3
@ =2(92%2 + 92+ 18) quo v+ 4 = 18z — 54 = 18rmod 33,
g3 = (z+4)+2- (922 + 92+ 18) — 18z (z+ 4)
= —55z+ 40 = z+ 13 mod 3%,
hy = (22 + 2 +2) + 2 (922 + 92+ 18) + 18z - (2% + v+ 2)
= 2723 4+ 2822 + 542+ 2 = 22 + .+ 2 mod 3?

Check: f— gshs = 23 + 1422 + 1524+ 26 — (z+ 13) (22 + 2+ 2) =0
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Example (continued)

i=2,f=a+ 1422 + 152+ 26, p =+ 4, ho =22 +2+2,p=3

ey = 23+ 1422 + 152426 — (z+4) (22 + 2+ 2) = 922 + 92+ 18
s = zand t = 2 still work:
z-(z+4)+2- (2?2 +2+2) =322 +62+4=1mod 3
@ =2(92%2 + 92+ 18) quo v+ 4 = 18z — 54 = 18rmod 33,
g3 = (z+4)+2- (922 + 92+ 18) — 18z (z+ 4)
= —55z+ 40 = z+ 13 mod 3%,
hy = (22 + 2 +2) + 2 (922 + 92+ 18) + 18z - (2% + v+ 2)
= 2723 4+ 2822 4 542+ 2 = 22 + £+ 2 mod 33

Check: f— gshs = 23 + 1422 + 1524+ 26 — (z+ 13) (22 + 2+ 2) =0
(In general, another stage is required after Hensel lifting.)
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Cost analysis

p € N prime, k € N, f € Q[z] monic nonconstant, deg f = n,
numerators and denominators of fabsolutely bounded by pF,
g1, 1 € Z[z] with coefficients in {0,...,p — 1}

Counting word operations:

O(nklog? p) to reduce all coefficients of fmodulo p
EEA: O(n?log? p)

k — 1 iterations of:

(f= gihi) rem p'tt: O(nk? log? p)

A (te; quo g;) rem p*tl: O(n?k? log? p)

(9i + tei — gigi) rem p™: O(nk? log? p)

B (i + se; + qih;) rem pt: O(n?k2 log? p)
Total cost: O(n?k3 log? p)
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Quadratic Hensel lifting

Main ingredient: lift from p’ tp p?? in one step by also lifting s and ¢

Total cost:
m O(M(n)logn-M(logp) + n- M(log p) loglog p) for the EEA in
Fylz]and
m O(M(n)M(klog p) for the main loop, which is dominated by the
cost for the last iteration

Ignoring constant and logarithmic factors, this corresponds to
nklog p word operations, vs 72 k> log p for the classical Hensel lifting

algorithm.
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Factors with negative integer coefficients

Hensel lifting to order k will always produce factors with nonnegative
integer coefficients less than p.

Solution: When reducing modulo pk, use symmetric coefficients in
ki k— . . . . .
{—251, ..., 1} instead of nonnegative coefficients in

{0,...,pF =1}

Example: 23 + 1422 + 152+ 26 = z° — 1322 — 122 — 1 mod 33
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Factors with rational coefficients

fe Qla] with f= f, -+ fy mod pt
Determine common denominator d € N such that df € Z[z]
Let g; = df; rem pkforl < i< r Then df= g1 gr mod Pk,

If f=hy -+ hyis the monic irreducible factorization in Q[z], then
also f= hy - - - b, mod p*, and the uniqueness of factorization
modulo p and of Hensel lifting implies that h; = <} = f; mod pk, for
all 4, up to reordering.

Thus ¢; = dh; mod p”. It follows from a Lemma by GauR that
dh; € Z[z], and if kis large enough, then |g — dh;| < p*, which
implies that g = dh; for all 4.
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Example

f:xz—%x—l,p:B,k:Q

Then f= (z+ 1)(z — 1) mod 3 and Hensel lifting yields

f=fife = (x—2)(z+4) mod 32

Choosing d = 2, we obtain g; = 2(z — 2) = 2z — 4 mod 32 and

g2 = 2(v+4) = 22— 1 mod 32.

Indeed, the factors of fin Q[z] are by = 2 — 2 = 4 and

hy = x+ % = %2

This is not the most efficient solution for rational coefficients; a
better way is to use rational number reconstruction (the equivalent of
Padé approximation in Z, using the EEA)
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How large is large enough?

fifis- .., fr € Z[z] nonconstant squarefree, deg f=n, f=fi-- [,

Mignotte's factor bound: ||fillco < vVn+1-2"||f|lccforl <i<r

Corollary: If
m peNprimeand k= 1+ [log,(vVn+1-2""f|s)]
B gi,...,gr € Z[z] with symmetric coefficients such that

f= 91---9rmodpk
Then IC{'}) lc(g) for 1 < ¢ <k, up to reordering.
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Swinnerton-Dyer polynomials

Can irreducible f € Q[z] be reducible in I, [z]?

Yes, this is quite common. Actually, there are examples that are
reducible modulo every prime p € N:

f= z* + 1; its complex roots are the primitive 8th roots of unity
o = €™t o3 L° KT Note that p? = i=+/—1and ¢ + 7 = /2.
mp=2:f=(z+1)* mod?2
m 4| (p— 1): then there exists a € F,[z] such that ® = —1.
Thus f= (22 + a)(z? — a) mod p
m 41 (p—1): then either 2 or —2is a square in .. In the first
case, f= (22 + bz + 1)(2? — bz + 1) mod p, where b% = 2, and
similarly in the second case.
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Factor combination

pprime, f= g1 -+ gs mod p*, k € N large enough

Irreducible factor f; of fin Q[z] may split into a H gj for some subset
jes
Sc{l,...,s}

Factor combination: Try all possible such subsets S until all factors of
fin Q[z] are found.
Worst case: firreducible in Q[z] — 2% — 2 trials

More efficient polynomial-time methods based on lattice reduction
exist (Lenstra, Lenstra & Lovacz, van Hoeij, ...)
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Zassenhaus' algorithm

Input: f € Z[z] squarefree of degree n > 0, d = lc(f)
Output: {fi,...,f,} C Q[z], monicirreducible, with f= df; - - f,
Choose a prime p € N not dividing d and such that fremains
squarefree in Fp[z]
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Zassenhaus' algorithm

Input: f € Z[z] squarefree of degree n > 0, d = lc(f)
Output: {fi,...,f,} C Q[z], monicirreducible, with f= df; - - f,
Choose a prime p € N not dividing d and such that fremains
squarefree in Fp[z]

ke 1+ [log,(dy/nTT-271||f]l)
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squarefree in Fp[z]
k< 1+ [log,(dvn+1- 27| £l 0o) |
Factor fmodulo p, yielding monic hy, ..., hy € Z[x] with
f=dhi---hsmod p
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Input: f € Z[z] squarefree of degree n > 0, d = lc(f)
Output: {fi,...,f,} C Q[z], monicirreducible, with f= df; - - f,
Choose a prime p € N not dividing d and such that fremains
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B ifdf=winZz]then T« T\ S, L+« LU{4}
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How many bad primes?

f=anz™+ -+ a1z + ayp € Z[z] nonconstant squarefree, deg f=n

p € Nbad prime :<=  p|lc(f) or f is not squarefree in [, [z]

<  plle(f)orged(f,f) # 1inFy[z]
<= p|detSyl(f,f’), where

Qn . ap ap
an o o ay ap
SYil,f)=1| nan ... c 7,2n—1)x(2n-1)
na, ... ay
na, ... a

Sylvester matrix
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Hadamard's inequality

f=anz™+ -+ a1z + ayp € Z[z] nonconstant squarefree, deg f=n

| det Syl(f, )| < (n* + n)"|| 1|20~
B

So there are at most log, B € O(nlog(n|/f||~)) many bad primes.
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Bivariate GCDs

Ffield, f, g € Flz, y], deg, < n, deg, < m
Main idea: Evaluation/interpolation

Choose evaluation points ag, . . ., as,, € F'such that
lez(f), lez(g) € Fly] do not vanish at y = a; for any i
fori=0,...,2mdo h; < ged(f(z, a;), g(z, a;)) € F[z]
Compute interpolating polynomial h € F[z, y] with deg, f<2m
and h(z, a;) = h;forall ¢
Using the EEA, perform rational reconstruction to compute
H € F(y)[z] with numerator and denominator degrees < m
and H(z, a;) = h(z, a;) for all ¢
return H

Note: we arbitrarily chose x as the main variable and return a GCD

that is monicin z
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Does this work?

There may be bad evaluation points such that degree of /; is too high.

Solution: Choose 4m instead of 2m evaluation points at random and
discard any h; whose degree is too high.

How many bad evaluation points are there?
a€ Fbad <= lci(fg)(a) =0
or deg, ged (flz, a), g(, a)) > deg, ged(f, 9
< lci(fg)(a) = 0 ordet Sy(f(z, a), g(x,a)) =0
< det Sy(f, 9)(a) =0,
where S is a certain square submatrix of Syl_(f, g).

Since every row in Syl f, g) has deg, < m, the degree of the
determinant of a submatrix is at most 2nm, and this is the maximal
number of bad evaluation points.
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Bivariate factorization

Ffield, f € Flz, y], deg, f= n, deg, f=m

Evaluation/interpolation does not work well because we do not know
which factors at y = a; correspond to which factors at y = q;

Similar to the Z[z] case, we choose a single evaluation point a, say
a = 0, and use Hensel lifting and factor combination

Algorithm

Input: f € F[z, y] squarefree with n = deg, f= n > 0, d = lc,(f),
m = deg, f

Output: {fi,...,f,} C F(y)[z], monicirreducible, with f= df;, - - - f;
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Bivariate Zassenhaus algorithm

Choose a € F'such that d(a) # 0 and f(x, a) squarefree in F'[z]
ff = fzy+a), & dy+a)
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Bivariate Zassenhaus algorithm

Choose a € F'such that d(a) # 0 and f(x, a) squarefree in F'[z]
[f = fzy+a), & dy+a)
k< 2m+1
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Bivariate Zassenhaus algorithm

Choose a € F'such that d(a) # 0 and f(x, a) squarefree in F'[z]
[f < fle,y+a), d <« dy+a)

k+<2m+1

Factor f*(z,0), yielding monic hy, ..., hs € F[z] with
f*(x,0) = d*(0)hy - - - hs, equivalently, f* = d*hy - - - hs mod y
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call Hensel lifting to obtain monic g1, ..., gs € F'[z] with
fr=d'gr - gsmod yf
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Hilbert's irreducibility theorem

Main idea for more than two variables: reduce to bivariate case by
substituting values for all but two variables

Ffield, f € Flz), 22, ...,z irreducible, ag, . . ., ax € Frandom.
Then f(x1, 22, as, . . ., ax) € Flay, 22] irreducible with high probability.

Consequently: no factor combination necessary for factorization.
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Multivariate GCDs

Ffield, f, g € Flx, 2, . .., xy]
Viewing f, g as polynomials in z;, recursively compute the gecd ¢
of all coefficients of fand g, and let f* = { and ¢g* = 2

Recursively compute
d « ged(leg, (f*),1eq, (g%)) € Flza, . .., x)

Choose many evaluation vectors a; = (a3, . .., ag) € F*2
such that deg, does not drop when x3, ..., z; are evaluated at
a;, forany ¢
forall ido
hi < ged(f* (1, 22, a3, ... ), g (21, 22, a3, . .. ) € Fa2)[21]
Compute interpolating polynomial h € Flzy, ..., z,] with

h(.’El, 2,03, ... ) = d(mg, as, ... )hl forall ¢

B Viewing h as a polynomial in z;, recursively compute the ged e
of all coefficients of h, and let h* = %

return h*
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Bad evaluation points

Ffield, f, g € Flz1, 22, ..., k]
As in the bivariate case, an evaluation point (a;, . . ., a;) can be bad
for two reasons:

m The degree in x; drops in step 3.
m The degree of the GCD is too high in step 4.

Solution: as in the bivariate case, double the number of g; and
choose them at random.
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How many evaluation points?

It is possible to give a sufficient but generally much to large
upper bound based on the degrees of the input polynomials in
all variables.

Generally, multivariate problems tend to be sparse, and a bound
depending on the nonzero terms of the input polynomials can
be determined.

In the sparse case, sparse interpolation should be used as well.

A heuristic alternative is to also interpolate the cofactors
u = f/hand v = g/hand adaptively add more points until
f= uhand g = vh.
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Multivariate factorization

Ffield, f € Flay, ..., x;] nonconstant squarefree, d; = 1 + deg,. f
Compute the GCD ¢ € Flay, ..., a3 of all coefficients w.r.t. z;
of f, and factor it recursivelyas c = ¢y - - - ¢
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Jr B ey, (1)

call the bivariate Zassenhaus algorithm to compute the monic
irreducible factors hy, ..., h, € F(ap)[z1] of f*(z1,22,0,...,0)
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d(2,0,...,0)h; € Flap][21], as well as g; = M

Hensel lifting, variable by variable, yields !
f*=fi-frmod < xg"’,...,xg"' > in Flay, ...,z

H returncy,..., cs,fl(zl, To, T3 — A3, . . . ), ... ,fr(xl, To, T3 — A3, . . )
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Remarks

m This is a heuristic algorithm based on the assumption that the
bivariate factors correspond uniquely to the multivariate ones.
Solution: Verify the final result by multiplying all factors
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Remarks

m This is a heuristic algorithm based on the assumption that the
bivariate factors correspond uniquely to the multivariate ones.
Solution: Verify the final result by multiplying all factors

m The shift 23 — a3 + a3, ... in step 3 can be avoided; it is done
here to simplify the presentation.

m There are also multivariate GCD algorithms based on Hensel
lifting instead of interpolation.
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