Polynomial GCDs and Factorization Tutorial

Jürgen Gerhard

Director of Research Maplesoft Waterloo ON, Canada

Summation, Integration and Special Functions in Quantum Field Theory, 2012

Outline

- 1 Introduction
- 2 Univariate GCDs
- 3 Univariate factorization over finite fields
- 4 Univariate factorization over the integers
- 5 Two or more variables

Outline

- 1 Introduction
 - Unique factorization domains
 - Cost models
- 2 Univariate GCDs
- 3 Univariate factorization over finite fields
- 4 Univariate factorization over the integers
- 5 Two or more variables

Commercial

Look forward to the 3rd edition!

Examples

$$x^3 - x = x \cdot (x^2 - 1) = x \cdot (x + 1) \cdot (x - 1)$$

 $x^4 - 1 = (x^2 + 1) \cdot (x^2 - 1)$
 $= (x^2 + 1) \cdot (x + 1) \cdot (x - 1)$ over \mathbb{Q}
 $= (x + i) \cdot (x - i) \cdot (x + 1) \cdot (x - 1)$ over \mathbb{C}

Common divisors of $x^4 - 1$ and $x^3 - x$:

1,
$$x+1$$
, $x-1$, $(x+1)(x-1) = x^2 - 1 = \gcd(x^4 - 1, x^3 - x)$

- R integral domain: $a \cdot b = a \cdot c \implies a = 0$ or b = c (cancellation law)
- $\blacksquare \ R^* = \{u \in R: \exists v \in R \ \text{with} \ u \cdot v = 1\}$ (group of units) Notation: $v = u^{-1}$
- $a \in R \setminus R^*$ irreducible: $a = bc \implies b \in R^*$ or $c \in R^*$
- $\blacksquare \ a \mid b :\iff \exists c \text{ with } ac = b$
- c greatest common divisor (GCD) of a and b: $c \mid a$ and $c \mid b$ and $\forall d \ (d \mid a \text{ and } d \mid b) \implies d \mid a$

- R integral domain: $a \cdot b = a \cdot c \implies a = 0$ or b = c (cancellation law)
- $\blacksquare \ R^* = \{u \in R: \exists v \in R \ \text{with} \ u \cdot v = 1\}$ (group of units) Notation: $v = u^{-1}$
- $a \in R \setminus R^*$ irreducible: $a = bc \implies b \in R^*$ or $c \in R^*$
- $\blacksquare \ a \mid b :\iff \exists c \text{ with } ac = b$
- c greatest common divisor (GCD) of a and b: $c \mid a$ and $c \mid b$ and $\forall d \mid (d \mid a \text{ and } d \mid b) \implies d \mid c$

- R integral domain: $a \cdot b = a \cdot c \implies a = 0$ or b = c (cancellation law)
- $R^* = \{u \in R: \exists v \in R \text{ with } u \cdot v = 1\}$ (group of *units*) Notation: $v = u^{-1}$
- $lacksquare a \in R \setminus R^*$ irreducible: $a = bc \implies b \in R^*$ or $c \in R^*$
- $\blacksquare \ a \mid b :\iff \exists c \text{ with } ac = b$
- c greatest common divisor (GCD) of a and b: $c \mid a$ and $c \mid b$ and $\forall d \mid (d \mid a \text{ and } d \mid b) \implies d \mid c$

- R integral domain: $a \cdot b = a \cdot c \implies a = 0$ or b = c (cancellation law)
- $R^* = \{u \in R: \exists v \in R \text{ with } u \cdot v = 1\}$ (group of *units*) Notation: $v = u^{-1}$
- $a \in R \setminus R^*$ irreducible: $a = bc \implies b \in R^*$ or $c \in R^*$
- $\blacksquare a \mid b :\iff \exists c \text{ with } ac = b$
- c greatest common divisor (GCD) of a and b: $c \mid a$ and $c \mid b$ and $\forall d \ (d \mid a \text{ and } d \mid b) \implies d \mid a$

- R integral domain: $a \cdot b = a \cdot c \implies a = 0$ or b = c (cancellation law)
- $R^* = \{u \in R: \exists v \in R \text{ with } u \cdot v = 1\} \quad \text{(group of } \textit{units)}$ Notation: $v = u^{-1}$
- $a \in R \setminus R^*$ irreducible: $a = bc \implies b \in R^*$ or $c \in R^*$
- $\blacksquare a \mid b : \iff \exists c \text{ with } ac = b$
- c greatest common divisor (GCD) of a and b: $c \mid a$ and $c \mid b$ and $\forall d \ (d \mid a \text{ and } d \mid b) \implies d \mid c$

- $a \sim b :\iff a \mid b \text{ and } b \mid a \iff \exists u \in R^* \ a = ub$ (a and b are associates)

 Exercise: all units are associates
- R unique factorization domain (UFD): R integral domain and $\forall a \in R \setminus \{0\} \ \exists u \in R^*, \ p_1, \ldots, p_r$ irreducible with $a = up_1 \cdots p_r$ and if $a = vq_1 \cdots q_s$ with $v \in R^*$ and q_1, \ldots, q_s irreducible, then r = s and $p_1 \sim q_1, \ldots, p_r \sim q_r$ (up to reordering)
- Given the first condition, the second one is equivalent to the existence of a GCD for all $a,b \in R$

- $a \sim b :\iff a \mid b \text{ and } b \mid a \iff \exists u \in R^* \ a = ub$ (a and b are associates)

 Exercise: all units are associates (Proof: $u = ab^{-1}$)
- R unique factorization domain (UFD): R integral domain and $\forall a \in R \setminus \{0\} \ \exists u \in R^*, \ p_1, \ldots, p_r$ irreducible with $a = up_1 \cdots p_r$ and if $a = vq_1 \cdots q_s$ with $v \in R^*$ and q_1, \ldots, q_s irreducible, then r = s and $p_1 \sim q_1, \ldots, p_r \sim q_r$ (up to reordering)
- Given the first condition, the second one is equivalent to the existence of a GCD for all $a,b \in R$

- $a \sim b :\iff a \mid b \text{ and } b \mid a \iff \exists u \in R^* \ a = ub$ (a and b are associates)

 Exercise: all units are associates (Proof: $u = ab^{-1}$)
- R unique factorization domain (UFD): R integral domain and $\forall a \in R \setminus \{0\} \ \exists u \in R^*, \ p_1, \dots, p_r$ irreducible with $a = up_1 \cdots p_r$ and if $a = vq_1 \cdots q_s$ with $v \in R^*$ and q_1, \dots, q_s irreducible, then r = s and $p_1 \sim q_1, \dots, p_r \sim q_r$ (up to reordering)
- Given the first condition, the second one is equivalent to the existence of a GCD for all $a,b \in R$

- $a \sim b :\iff a \mid b \text{ and } b \mid a \iff \exists u \in R^* \ a = ub$ (a and b are associates)

 Exercise: all units are associates (Proof: $u = ab^{-1}$)
- R unique factorization domain (UFD): R integral domain and $\forall a \in R \setminus \{0\} \ \exists u \in R^*, \ p_1, \dots, p_r$ irreducible with $a = up_1 \cdots p_r$ and if $a = vq_1 \cdots q_s$ with $v \in R^*$ and q_1, \dots, q_s irreducible, then r = s and $p_1 \sim q_1, \dots, p_r \sim q_r$ (up to reordering)
- Given the first condition, the second one is equivalent to the existence of a GCD for all $a, b \in R$

UFD examples

■ \mathbb{Z} is a UFD with $\mathbb{Z}^* = \{-1, 1\}$; thus $a \sim b \iff a = \pm b$. Irreducible elements: prime numbers and their negatives. All irreducible factorizations of 6:

$$6 = 1 \cdot 2 \cdot 3 = 1 \cdot (-2) \cdot (-3) = -1 \cdot 2 \cdot (-3) = -1 \cdot (-2) \cdot 3$$

-2 and 2 are all the GCDs of 4 and 6.

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, more generally any field F is a UFD with $F^* = F \setminus \{0\}$ and no irreducible elements.
- The univariate polynomail ring $\mathbb{Q}[x]$ is a UFD. More generally, a polynomial ring $R = F[x_1, \ldots, x_n]$ in n variables over a UFD F is a UFD, with $R^* = F^*$. In $\mathbb{C}[x]$, the irreducible elements are exactly the linear polynomials.

UFD examples

■ \mathbb{Z} is a UFD with $\mathbb{Z}^* = \{-1, 1\}$; thus $a \sim b \iff a = \pm b$. Irreducible elements: prime numbers and their negatives. All irreducible factorizations of 6:

$$6 = 1 \cdot 2 \cdot 3 = 1 \cdot (-2) \cdot (-3) = -1 \cdot 2 \cdot (-3) = -1 \cdot (-2) \cdot 3$$

- -2 and 2 are all the GCDs of 4 and 6.
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, more generally any field F is a UFD with $F^* = F \setminus \{0\}$ and no irreducible elements.
- The univariate polynomail ring $\mathbb{Q}[x]$ is a UFD. More generally, a polynomial ring $R = F[x_1, \ldots, x_n]$ in n variables over a UFD F is a UFD, with $R^* = F^*$. In $\mathbb{C}[x]$, the irreducible elements are exactly the linear polynomials.

UFD examples

■ \mathbb{Z} is a UFD with $\mathbb{Z}^* = \{-1, 1\}$; thus $a \sim b \iff a = \pm b$. Irreducible elements: prime numbers and their negatives. All irreducible factorizations of 6:

$$6 = 1 \cdot 2 \cdot 3 = 1 \cdot (-2) \cdot (-3) = -1 \cdot 2 \cdot (-3) = -1 \cdot (-2) \cdot 3$$

-2 and 2 are all the GCDs of 4 and 6.

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, more generally any field F is a UFD with $F^* = F \setminus \{0\}$ and no irreducible elements.
- The univariate polynomail ring $\mathbb{Q}[x]$ is a UFD. More generally, a polynomial ring $R=F[x_1,\ldots,x_n]$ in n variables over a UFD F is a UFD, with $R^*=F^*$. In $\mathbb{C}[x]$, the irreducible elements are exactly the linear polynomials.

A non-example

$$R=\mathbb{Z}[\sqrt{-5}]=\{a+b\sqrt{5}i:a,b\in\mathbb{Z}\}$$
 is not a UFD.

- A unit $u \in R$ has $||u|| = a^2 + 5b^2 = 1$; thus $R^* = \{-1, 1\}$.
- \mathbf{Z} 2, 3 and $1 \pm \sqrt{5}i$ are all irreducible and

$$2 \cdot 3 = 6 = (1 + \sqrt{5}i)(1 - \sqrt{5}i)$$

are two non-associated factorizations into irreducibles.

 \blacksquare The common factors of a=6 and $b=2+2\sqrt{5}i$ are

$$\{-1, 1, -2, 2, 1 + \sqrt{5}i, -1 - \sqrt{5}i\},\$$

and hence a and b do not have a GCD.

Units and normalization

It is convenient to have a normalized irreducible factorization and a function \gcd and not have to worry about associates, so we pick a normal form.

- $a\in\mathbb{Z}$ is normalized $\iff a\geq 0$. $\gcd(a,b)$ is the unique nonnegative GCD of a and b. The normalized irreducible factorization of $a\neq 0$ is $a=up_1\cdots p_r$ such that $u=\pm 1$ and $p_1,\ldots,p_r>1$ are prime numbers.
- Let F be a field. $a \in F[x] \setminus \{0\}$ is normalized $\iff a$ is monic, i.e., has leading coefficient 1. $\gcd(a,b) :=$ unique monic GCD of nonzero polynomials a and b. The normalized irreducible factorization of $a \neq 0$ is $a = up_1 \cdots p_r$ such that $u \in F \setminus \{0\}$ and p_1, \ldots, p_r are monic (non-constant) irreducible polynomials.

Units and normalization

It is convenient to have a normalized irreducible factorization and a function \gcd and not have to worry about associates, so we pick a normal form.

- $a\in\mathbb{Z}$ is normalized $\iff a\geq 0$. $\gcd(a,b)$ is the unique nonnegative GCD of a and b. The normalized irreducible factorization of $a\neq 0$ is $a=up_1\cdots p_r$ such that $u=\pm 1$ and $p_1,\ldots,p_r>1$ are prime numbers.
- Let F be a field. $a \in F[x] \setminus \{0\}$ is normalized $\iff a$ is monic, i.e., has leading coefficient 1. $\gcd(a,b) :=$ unique monic GCD of nonzero polynomials a and b. The normalized irreducible factorization of $a \neq 0$ is $a = up_1 \cdots p_r$ such that $u \in F \setminus \{0\}$ and p_1, \ldots, p_r are monic (non-constant) irreducible polynomials.

- \blacksquare finite field \mathbb{F}_p , where p is a prime number; ``integers modulo p''
- lacksquare algebraic extensions, e.g., $\mathbb{Q}[i]$ (Gaussian integers)
- transcendental extensions by ``parameters'', e.g., $\mathbb{Q}(t)$ (rational functions in t). Expressions containing only parameters are considered ``constants'' (units).

- \blacksquare \mathbb{Q}
- finite field \mathbb{F}_p , where p is a prime number; ``integers modulo p''
- lacksquare algebraic extensions, e.g., $\mathbb{Q}[i]$ (Gaussian integers)
- transcendental extensions by ``parameters'', e.g., $\mathbb{Q}(t)$ (rational functions in t). Expressions containing only parameters are considered ``constants'' (units).

- finite field \mathbb{F}_p , where p is a prime number; "integers modulo p"
- lacksquare algebraic extensions, e.g., $\mathbb{Q}[i]$ (Gaussian integers)
- transcendental extensions by ``parameters'', e.g., $\mathbb{Q}(t)$ (rational functions in t). Expressions containing only parameters are considered ``constants'' (units).

- \blacksquare \mathbb{Q}
- finite field \mathbb{F}_p , where p is a prime number; "integers modulo p"
- \blacksquare algebraic extensions, e.g., $\mathbb{Q}[i]$ (Gaussian integers)
- transcendental extensions by ``parameters'', e.g., $\mathbb{Q}(t)$ (rational functions in t). Expressions containing only parameters are considered ``constants'' (units).

F field, $R = F[x_1, \ldots, x_n]$

- Sequential algorithms (parallel algorithms possible by considering length of critical path instead of total cost)
- Unit cost for one arithmetic operation $+, -, \cdot$, or $^{-1}$ in F
- Variables x_1, \ldots, x_n are just "placeholders" and multiplication by a product of variables is "for free"
- If $F = \mathbb{Q}$ or $F = \mathbb{F}_p$, the word RAM model also assigns a non-trivial cost to arithmetic operation in F, depending on the size (number of machine words) of the operands in memory
- Cost for zero testing, memory management, loop index arithmetic etc. is considered non-dominant and therefore ignored

F field, $R = F[x_1, \ldots, x_n]$

- Sequential algorithms (parallel algorithms possible by considering length of critical path instead of total cost)
- Unit cost for one arithmetic operation $+, -, \cdot$, or $^{-1}$ in F
- Variables x_1, \ldots, x_n are just "placeholders" and multiplication by a product of variables is "for free"
- If $F = \mathbb{Q}$ or $F = \mathbb{F}_p$, the word RAM model also assigns a non-trivial cost to arithmetic operation in F, depending on the size (number of machine words) of the operands in memory
- Cost for zero testing, memory management, loop index arithmetic etc. is considered non-dominant and therefore ignored

F field, $R = F[x_1, \ldots, x_n]$

- Sequential algorithms (parallel algorithms possible by considering length of critical path instead of total cost)
- Unit cost for one arithmetic operation $+, -, \cdot$, or $^{-1}$ in F
- Variables x_1, \dots, x_n are just ``placeholders' and multiplication by a product of variables is ``for free'
- If $F = \mathbb{Q}$ or $F = \mathbb{F}_p$, the word RAM model also assigns a non-trivial cost to arithmetic operation in F, depending on the size (number of machine words) of the operands in memory
- Cost for zero testing, memory management, loop index arithmetic etc. is considered non-dominant and therefore ignored

$$F$$
 field, $R = F[x_1, \ldots, x_n]$

- Sequential algorithms (parallel algorithms possible by considering length of critical path instead of total cost)
- Unit cost for one arithmetic operation $+, -, \cdot$, or $^{-1}$ in F
- Variables x_1, \dots, x_n are just "placeholders" and multiplication by a product of variables is "for free"
- If $F=\mathbb{Q}$ or $F=\mathbb{F}_p$, the word RAM model also assigns a non-trivial cost to arithmetic operation in F, depending on the size (number of machine words) of the operands in memory
- Cost for zero testing, memory management, loop index arithmetic etc. is considered non-dominant and therefore ignored

F field, $R = F[x_1, \ldots, x_n]$

- Sequential algorithms (parallel algorithms possible by considering length of critical path instead of total cost)
- Unit cost for one arithmetic operation $+, -, \cdot$, or $^{-1}$ in F
- Variables x_1, \ldots, x_n are just "placeholders" and multiplication by a product of variables is "for free"
- If $F=\mathbb{Q}$ or $F=\mathbb{F}_p$, the word RAM model also assigns a non-trivial cost to arithmetic operation in F, depending on the size (number of machine words) of the operands in memory
- Cost for zero testing, memory management, loop index arithmetic etc. is considered non-dominant and therefore ignored

- Classical" algorithms are typically quadratic in the input size. E.g., multiplication of two polynomials of degree $\leq n$ in F[x] takes $(n+1)^2$ multiplications in F and n^2 additions, in total $2n^2+2n-1\in O(n^2)$ arithmetic operations in F.
- ``Asymptotically fast' algorithms exist and take only $O(n \log^k n)$ operations for some $k \in \mathbb{N}$.
- Notation: multiplication time M(n) = number of arithmetic operations in F sufficient to multiply two univariate polynomials of degree $\leq n$.
- Classical arithmetic: $M(n) = 2n^2 + 2n + 1 \in O(n^2)$
- Fast arithmetic: $M(n) \in O(n \log n \log \log n)$

- Classical" algorithms are typically quadratic in the input size. E.g., multiplication of two polynomials of degree $\leq n$ in F[x] takes $(n+1)^2$ multiplications in F and n^2 additions, in total $2n^2+2n-1\in O(n^2)$ arithmetic operations in F.
- ``Asymptotically fast' algorithms exist and take only $O(n \log^k n)$ operations for some $k \in \mathbb{N}$.
- Notation: multiplication time M(n) = number of arithmetic operations in F sufficient to multiply two univariate polynomials of degree $\leq n$.
- Classical arithmetic: $M(n) = 2n^2 + 2n + 1 \in O(n^2)$
- Fast arithmetic: $M(n) \in O(n \log n \log \log n)$

- Classical" algorithms are typically quadratic in the input size. E.g., multiplication of two polynomials of degree $\leq n$ in F[x] takes $(n+1)^2$ multiplications in F and n^2 additions, in total $2n^2+2n-1\in O(n^2)$ arithmetic operations in F.
- ``Asymptotically fast' algorithms exist and take only $O(n \log^k n)$ operations for some $k \in \mathbb{N}$.
- Notation: $multiplication\ time\ M(n)=$ number of arithmetic operations in F sufficient to multiply two univariate polynomials of degree $\leq n$.
- Classical arithmetic: $M(n) = 2n^2 + 2n + 1 \in O(n^2)$
- Fast arithmetic: $M(n) \in O(n \log n \log \log n)$

- Classical" algorithms are typically quadratic in the input size. E.g., multiplication of two polynomials of degree $\leq n$ in F[x] takes $(n+1)^2$ multiplications in F and n^2 additions, in total $2n^2+2n-1\in O(n^2)$ arithmetic operations in F.
- ``Asymptotically fast'' algorithms exist and take only $O(n \log^k n)$ operations for some $k \in \mathbb{N}$.
- Notation: $multiplication\ time\ M(n)=$ number of arithmetic operations in F sufficient to multiply two univariate polynomials of degree $\leq n$.
- Classical arithmetic: $\mathbf{M}(n) = 2n^2 + 2n + 1 \in O(n^2)$
- Fast arithmetic: $M(n) \in O(n \log n \log \log n)$

- Classical" algorithms are typically quadratic in the input size. E.g., multiplication of two polynomials of degree $\leq n$ in F[x] takes $(n+1)^2$ multiplications in F and n^2 additions, in total $2n^2+2n-1\in O(n^2)$ arithmetic operations in F.
- ``Asymptotically fast' algorithms exist and take only $O(n \log^k n)$ operations for some $k \in \mathbb{N}$.
- Notation: $multiplication\ time\ M(n)=$ number of arithmetic operations in F sufficient to multiply two univariate polynomials of degree $\leq n$.
- Classical arithmetic: $M(n) = 2n^2 + 2n + 1 \in O(n^2)$
- Fast arithmetic: $M(n) \in O(n \log n \log \log n)$

Basic univariate polynomial arithmetic cost

 $f,g\in F[x]$ polynomials, $\deg g=m\leq n=\deg f$, $a\in F$ constant

Operation	Classical	Fast
f(a)	2n-2	2n-2
f+g	m+1	m+1
$f \cdot g$	2mn + O(n)	M(n)
f quo g	O(m(n-m))	O(M(n-m))
$f \operatorname{rem} g$	O(m(n-m))	O(M(n))

Note: $f(a) = f \operatorname{rem}(x - a)$

Outline

- 1 Introduction
- 2 Univariate GCDs
 - Euclidean algorithm
 - Variants and EEA
- 3 Univariate factorization over finite fields
- 4 Univariate factorization over the integers
- 5 Two or more variables

It is straightforward to compute GCDs from factorizations, but there is a much more efficient and famous algorithm first introduced for integers.

Example: Compute the (monic) \gcd of $x^5+x^3+x^2-2x$ and x^4-x^2+x . Iterated division with remainder:

$$x^{5} + x^{3} + x^{2} - 2x = x \cdot (x^{4} - x^{2} + x) + 2x^{3} - 2x,$$

$$x^{4} - x^{2} + x = \frac{1}{2}x \cdot (2x^{3} - 2x) + x,$$

$$2x^{3} - 2x = (2x^{2} - 2) \cdot x + 0,$$

$$x = \gcd(x^{5} + x^{3} + x^{2} - 2x, x^{4} - x^{2} + x)$$

$$x^{5} + x^{3} + x^{2} - 2x = x \cdot (x^{4} - x^{2} + x) + 2x^{3} - 2x,$$

$$x^{4} - x^{2} + x = \frac{1}{2}x \cdot (2x^{3} - 2x) + x,$$

$$2x^{3} - 2x = (2x^{2} - 2) \cdot x + 0,$$

$$x = \gcd(x^{5} + x^{3} + x^{2} - 2x, x^{4} - x^{2} + x)$$

Observations:

- Even though the input polynomials are monic, the quotients and remainders may not be.
- Even though the input polynomials have integer coefficients, the quotients and remainders may have denominators.
- The degree can decrease by more than 1 in a single step.

$$x^{5} + x^{3} + x^{2} - 2x = x \cdot (x^{4} - x^{2} + x) + 2x^{3} - 2x,$$

$$x^{4} - x^{2} + x = \frac{1}{2}x \cdot (2x^{3} - 2x) + x,$$

$$2x^{3} - 2x = (2x^{2} - 2) \cdot x + 0,$$

$$x = \gcd(x^{5} + x^{3} + x^{2} - 2x, x^{4} - x^{2} + x)$$

Observations:

- Even though the input polynomials are monic, the quotients and remainders may not be.
- Even though the input polynomials have integer coefficients, the quotients and remainders may have denominators.
- The degree can decrease by more than 1 in a single step.

$$x^{5} + x^{3} + x^{2} - 2x = x \cdot (x^{4} - x^{2} + x) + 2x^{3} - 2x,$$

$$x^{4} - x^{2} + x = \frac{1}{2}x \cdot (2x^{3} - 2x) + x,$$

$$2x^{3} - 2x = (2x^{2} - 2) \cdot x + 0,$$

$$x = \gcd(x^{5} + x^{3} + x^{2} - 2x, x^{4} - x^{2} + x)$$

Observations:

- Even though the input polynomials are monic, the quotients and remainders may not be.
- Even though the input polynomials have integer coefficients, the quotients and remainders may have denominators.
- \blacksquare The degree can decrease by more than 1 in a single step.

Input: $f, g \in F[x]$ for a field F

Output: $gcd(f, g) \in F[x]$

- \blacksquare return f

Is this correct?

Input: $f, g \in F[x]$ for a field FOutput: $gcd(f, g) \in F[x]$

- 2 for $i \geq 1$ while $r_i \neq 0$ do
- $r_{i+1} \leftarrow r_{i-1} \text{ rem } r_i$
- 4 return $\frac{r_{i-1}}{\operatorname{lc}(r_{i-1})}$

Input: $f, g \in F[x]$ for a field FOutput: $gcd(f, g) \in F[x]$

Dutput:
$$gcd(f,g) \in F[x]$$

2 for $i \geq 1$ while $r_i \neq 0$ do

$$r_{i+1} \leftarrow r_{i-1} \text{ rem } r_i$$

4 return
$$\frac{r_{i-1}}{\operatorname{lc}(r_{i-1})}$$

Input: $f, g \in F[x]$ for a field F

Output: $\gcd(f,g) \in F[x]$

- 2 for $i \ge 1$ while $r_i \ne 0$ do
- $r_{i+1} \leftarrow r_{i-1} \text{ rem } r_i$
- 4 return $\frac{r_{i-1}}{\operatorname{lc}(r_{i-1})}$

Input: $f, g \in F[x]$ for a field F

Output: $gcd(f, g) \in F[x]$

- 2 for $i \ge 1$ while $r_i \ne 0$ do
- $r_{i+1} \leftarrow r_{i-1} \text{ rem } r_i$
- return $\frac{r_{i-1}}{\operatorname{lc}(r_{i-1})}$

Remark: lc(0) := 1, $deg 0 := -\infty$

Cost

$$f,g\in F[x]$$
, $n=\deg f\geq \deg g=m$, $f\neq 0$
Let $n_i=\deg r_i$ for $1\leq i\leq \ell$ such that $r_{\ell+1}=0$.

Cost for division with remainder in step 3: $O(n_i \cdot (n_{i-1} - n_i))$

Cost for normalization in step 4: n_ℓ

Total cost:
$$n_{\ell} + \sum_{1 \leq i \leq \ell} O(n_i(n_{i-1} - n_i)) = O(nm)$$

- Monic EA: normalize remainder at every step, not just at the end: still O(nm) but smaller coefficients
- Asymptotically fast EA: $O(M(n) \log n)$ (divide-and-conquer, Knuth, Schönhage, Moenck, ...)
- Subresultant algorithm: fraction-free (Collins)
- Modular algorithms (Brown, Collins, ...). We'll come back to this later.

- Monic EA: normalize remainder at every step, not just at the end: still O(nm) but smaller coefficients
- Asymptotically fast EA: $O(M(n) \log n)$ (divide-and-conquer, Knuth, Schönhage, Moenck, ...)
- Subresultant algorithm: fraction-free (Collins)
- Modular algorithms (Brown, Collins, ...). We'll come back to this later.

- Monic EA: normalize remainder at every step, not just at the end: still O(nm) but smaller coefficients
- Asymptotically fast EA: $O(M(n) \log n)$ (divide-and-conquer, Knuth, Schönhage, Moenck, ...)

If $F=\mathbb{Q}$ and $f,g\in\mathbb{Z}[x]$ (improved cost in the word RAM model):

- Subresultant algorithm: fraction-free (Collins)
- Modular algorithms (Brown, Collins, ...). We'll come back to this later.

- Monic EA: normalize remainder at every step, not just at the end: still O(nm) but smaller coefficients
- Asymptotically fast EA: $O(M(n) \log n)$ (divide-and-conquer, Knuth, Schönhage, Moenck, ...)

If $F = \mathbb{Q}$ and $f, g \in \mathbb{Z}[x]$ (improved cost in the word RAM model):

- Subresultant algorithm: fraction-free (Collins)
- Modular algorithms (Brown, Collins, ...). We'll come back to this later.

Similar if ${\cal F}$ is a rational function field and f,g are multivariate polynomials.

Extended Euclidean Algorithm

Input:
$$f, g \in F[x]$$
 for a field F

$${\bf Output} \hbox{:} \ r \qquad \in F[x] \ {\rm such \ that}$$

$$r = \gcd(f, g)$$

- 2 for $i \geq 1$ while $r_i \neq 0$ do
- $q_i \leftarrow r_{i-1} \text{ quo } r_i$

4
$$r_{i+1} \leftarrow r_{i-1} - q_i r_i (= r_{i-1} \text{ rem } r_i)$$

7 return
$$\frac{r_{i-1}}{\operatorname{lc}(r_{i-1})}$$

Extended Euclidean Algorithm

Input: $f, g \in F[x]$ for a field F

Output: r, s, $t \in F[x]$ such that $sf + tg = r = \gcd(f, g)$

$$\begin{array}{c} \textcolor{red}{\mathbf{1}} \hspace{0.1cm} \left(\begin{array}{c} r_0 \\ r_1 \end{array} \right) \leftarrow \left(\begin{array}{c} f \\ g \end{array} \right) \hspace{-0.1cm}, \left(\begin{array}{c} s_0 \\ s_1 \end{array} \right) \leftarrow \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \hspace{-0.1cm}, \left(\begin{array}{c} t_0 \\ t_1 \end{array} \right) \leftarrow \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

- 2 for $i \geq 1$ while $r_i \neq 0$ do
- $q_i \leftarrow r_{i-1} \text{ quo } r_i$
- $r_{i+1} \leftarrow r_{i-1} q_i r_i (= r_{i-1} \text{ rem } r_i)$
- $s_{i+1} \leftarrow s_{i-1} q_i s_i$
- return $rac{r_{i-1}}{\mathrm{lc}(r_{i-1})}, rac{s_{i-1}}{\mathrm{lc}(r_{i-1})}, rac{t_{i-1}}{\mathrm{lc}(r_{i-1})}$

Extended Euclidean Algorithm

Input: $f, g \in F[x]$ for a field F

Output: r, s, $t \in F[x]$ such that $sf + tg = r = \gcd(f, g)$

$$\begin{array}{c} \mathbf{1} & \left(\begin{array}{c} r_0 \\ r_1 \end{array} \right) \leftarrow \left(\begin{array}{c} f \\ g \end{array} \right), \left(\begin{array}{c} s_0 \\ s_1 \end{array} \right) \leftarrow \left(\begin{array}{c} \mathbf{1} \\ \mathbf{0} \end{array} \right), \left(\begin{array}{c} t_0 \\ t_1 \end{array} \right) \leftarrow \left(\begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array} \right) \end{array}$$

- 2 for $i \ge 1$ while $r_i \ne 0$ do
- $q_i \leftarrow r_{i-1} \text{ quo } r_i$
- $r_{i+1} \leftarrow r_{i-1} q_i r_i (= r_{i-1} \text{ rem } r_i)$
- $s_{i+1} \leftarrow s_{i-1} q_i s_i$
- return $rac{r_{i-1}}{\mathrm{lc}(r_{i-1})}, rac{s_{i-1}}{\mathrm{lc}(r_{i-1})}, rac{t_{i-1}}{\mathrm{lc}(r_{i-1})}$

Cost: O(nm)

i	q_i	r_i	s_i	t_i
0		$x^5 + x^3 + x^2 - 2x$	1	0
1	x	$x^4 - x^2 + x$	0	1
2	$\frac{1}{2}x$	$2x^3 - 2x$	1	-x
3	$2x^2 - 2$	x	$-\frac{1}{2}x$	$\frac{1}{2}x^2 + 1$
4		0	$x^3 - x + 1$	$-x^4 - x^2 - x + 2$

- $\ell = \#$ quotients = 3
- $\gcd(f,g) = \frac{r_3}{1} = x = -\frac{1}{2}x \cdot f + \left(\frac{1}{2}x^2 + 1\right) \cdot g = \frac{s_3}{1}f + \frac{t_3}{1}g$
- Invariant I: $r_i = s_i f + t_i g$ for $0 \le i \le \ell + 1$
- Invariant II: $\deg s_i = \deg g \deg r_{i-1}$ for $1 < i \le \ell + 1$ and $\deg t_i = \deg f \deg r_{i-1}$ for $1 \le i \le \ell + 1$
- Last row: cofactors $u_{\ell+1}, v_{\ell+1}$ such that $f = (-1)^{\ell+1} u_{\ell+1} r_{\ell}$ and $g = (-1)^{\ell} v_{\ell+1} r_{\ell}$

i	q_i	r_i	s_i	t_i
0		$x^5 + x^3 + x^2 - 2x$	1	0
1	x	$x^4 - x^2 + x$	0	1
2	$\frac{1}{2}x$	$2x^3 - 2x$	1	-x
3	$2x^2 - 2$	x	$-\frac{1}{2}x$	$\frac{1}{2}x^2 + 1$
4		0	$x^3 - x + 1$	$-x^4 - x^2 - x + 2$

- $\ell = \#$ quotients = 3
- $\gcd(f,g) = \frac{r_3}{1} = x = -\frac{1}{2}x \cdot f + \left(\frac{1}{2}x^2 + 1\right) \cdot g = \frac{s_3}{1}f + \frac{t_3}{1}g$
- Invariant I: $r_i = s_i f + t_i g$ for $0 \le i \le \ell + 1$
- Invariant II: $\deg s_i = \deg g \deg r_{i-1}$ for $1 < i \le \ell + 1$ and $\deg t_i = \deg f \deg r_{i-1}$ for $1 \le i \le \ell + 1$
- Last row: cofactors $u_{\ell+1}$, $v_{\ell+1}$ such that $f = (-1)^{\ell+1} u_{\ell+1} r_{\ell}$ and $g = (-1)^{\ell} v_{\ell+1} r_{\ell}$

i	q_i	r_i	s_i	t_i
0		$x^5 + x^3 + x^2 - 2x$	1	0
1	x	$x^4 - x^2 + x$	0	1
2	$\frac{1}{2}x$	$2x^3 - 2x$	1	-x
3	$2x^2 - 2$	x	$-\frac{1}{2}x$	$\frac{1}{2}x^2 + 1$
4		0	$x^3 - x + 1$	$-x^4 - x^2 - x + 2$

- $\ell = \#$ quotients = 3
- $\gcd(f,g) = \frac{r_3}{1} = x = -\frac{1}{2}x \cdot f + \left(\frac{1}{2}x^2 + 1\right) \cdot g = \frac{s_3}{1}f + \frac{t_3}{1}g$
- Invariant I: $r_i = s_i f + t_i g$ for $0 \le i \le \ell + 1$
- Invariant II: $\deg s_i = \deg g \deg r_{i-1}$ for $1 < i \le \ell + 1$ and $\deg t_i = \deg f \deg r_{i-1}$ for $1 \le i \le \ell + 1$
- Last row: cofactors $u_{\ell+1}, v_{\ell+1}$ such that $f = (-1)^{\ell+1} u_{\ell+1} r_{\ell}$ and $g = (-1)^{\ell} v_{\ell+1} r_{\ell}$

i	q_i	r_i	s_i	t_i
0		$x^5 + x^3 + x^2 - 2x$	1	0
1	x	$x^4 - x^2 + x$	0	1
2	$\frac{1}{2}x$	$2x^3 - 2x$	1	-x
3	$2x^2 - 2$	x	$-\frac{1}{2}x$	$\frac{1}{2}x^2 + 1$
4		0	$x^3 - x + 1$	$-x^4 - x^2 - x + 2$

- $\ell = \#$ quotients = 3
- $\gcd(f,g) = \frac{r_3}{1} = x = -\frac{1}{2}x \cdot f + \left(\frac{1}{2}x^2 + 1\right) \cdot g = \frac{s_3}{1}f + \frac{t_3}{1}g$
- Invariant I: $r_i = s_i f + t_i g$ for $0 \le i \le \ell + 1$
- Invariant II: $\deg s_i = \deg g \deg r_{i-1}$ for $1 < i \le \ell + 1$ and $\deg t_i = \deg f \deg r_{i-1}$ for $1 \le i \le \ell + 1$
- Last row: cofactors $u_{\ell+1}, v_{\ell+1}$ such that $f = (-1)^{\ell+1} u_{\ell+1} r_{\ell}$ and $g = (-1)^{\ell} v_{\ell+1} r_{\ell}$

i	q_{i}	r_i	s_i	t_i
0		$x^5 + x^3 + x^2 - 2x$	1	0
1	x	$x^4 - x^2 + x$	0	1
2	$\frac{1}{2}x$	$2x^3 - 2x$	1	-x
3	$2x^2 - 2$	x	$-\frac{1}{2}x$	$\frac{1}{2}x^2 + 1$
4		0	$x^3 - x + 1$	$-x^4 - x^2 - x + 2$

- $\ell = \#$ quotients = 3
- $\gcd(f,g) = \frac{r_3}{1} = x = -\frac{1}{2}x \cdot f + \left(\frac{1}{2}x^2 + 1\right) \cdot g = \frac{s_3}{1}f + \frac{t_3}{1}g$
- Invariant I: $r_i = s_i f + t_i g$ for $0 \le i \le \ell + 1$
- Invariant II: $\deg s_i = \deg g \deg r_{i-1}$ for $1 < i \le \ell + 1$ and $\deg t_i = \deg f \deg r_{i-1}$ for $1 \le i \le \ell + 1$
- Last row: cofactors $u_{\ell+1}, v_{\ell+1}$ such that $f=(-1)^{\ell+1}u_{\ell+1}r_\ell$ and $g=(-1)^\ell v_{\ell+1}r_\ell$

Application I: modular inverses

Given $f,g\in F[x]\setminus\{0\}$ with f irreducible and $\deg g<\deg f$, compute

$$h = g^{-1} \bmod f,$$

i.e., $h \in F[x]$ with $\deg h < \deg f$ and $f \mid (gh - 1)$.

Solution: Since f is irreducible, gcd(f, g) = 1 = sf + tg, so h = t.

This has applications, e.g., in modular arithmetic (later).

Application II: partial fractions

Given $f, g, r \in F[x] \setminus \{0\}$ with $\gcd(f, g) = 1$ and $\deg r < \deg f + \deg g$, find $u, v \in F[x]$ with $\deg u < \deg f$, $\deg v < \deg g$, and

$$\frac{r}{fg} = \frac{u}{f} + \frac{v}{g}.$$

Solution: gcd(f, g) = 1 = sf + tg, so r = rsf + rtg. Let q = rs quo g, v = rs rem g = rs - qg and u = rt + qf, then

$$\frac{r}{fg} = \frac{rt}{f} + \frac{rs}{g} = \left(\frac{rt}{f} + \frac{qf}{f}\right) + \left(\frac{rs}{g} - \frac{qg}{g}\right) = \frac{u}{f} + \frac{v}{g}.$$

This has applications, e.g., in symbolic integration (Hermite).

Application III: rational interpolation

Given a collection of n points $(x_j,y_j)\in F^2$, find a rational function $\rho=\frac{u}{v}$, with $u,v\in F[x]$ such that $\deg u\leq k$ and $\deg v< n-k$, that interpolates all the points: $\rho(x_j)=\frac{u(x_j)}{v(x_i)}=y_j$ for $1\leq j\leq n$.

Solution: $f = (x - x_1) \cdots (x - x_n)$, g = Lagrange interpolation polynomial. In the EEA for f and g, stop at i such that $\deg r_i < k \leq \deg r_{i-1}$. Then

$$r_i(x_j) = s_i(x_j)f(x_j) + t_i(x_j)g(x_j) = t_i(x_j)y_j,$$

so $\rho=u/v=r_i/t_i$ is a solution unless $t_i(x_j)=0$ for some j (in which case no solution exists).

This has applications, e.g., in bivariate gcd computation (later).

Application IV: Padé approximation

Given a sufficiently smooth function $c: F \to F$, find a rational function $\rho = \frac{u}{v}$, with $u, v \in F[x]$ such that $\deg u \le k$ and $\deg v < n - k$, such that the Taylor expansions of c and ρ at x = 0 agree for the first n terms: $\rho^{(j)}(0) = c^{(j)}(0)$ for $0 \le j < n$

Solution: $f = x^n$, g = nth Taylor polynomial of c. In the EEA for f and g, stop at i such that $\deg r_i < k \le \deg r_{i-1}$. Then $\rho = u/v = r_i/t_i$ is a solution since

$$\rho^{(j)}(0) = \left(\frac{r_i}{t_i}\right)^{(j)}(0) = \left(\frac{s_i}{t_i}x^n\right)^{(j)}(0) + g^{(j)}(0) = c^{(j)}(0),$$

unless $t_i(0) = 0$ (in which case no solution exists).

This has applications, e.g., in coding theory (Berlekamp-Massey algorithm) and bivariate factorization (later).

Asymptotically fast EEA

It is not possible to compute *all* r_i, s_i, t_i for $1 \le i \le \ell$ in time $O(\mathsf{M}(n)\log n)$, but all the previous applications require is r_i, s_i, t_i for one specific value of i (e.g., $i=\ell$), and that can be computed in time $O(\mathsf{M}(n)\log n)$.

Outline

- 1 Introduction
- 2 Univariate GCDs
- 3 Univariate factorization over finite fields
 - Modular arithmetic
 - Meta algorithm
 - Squarefree factorization
 - Distinct-degree factorization
 - Equal-defree factorization
- 4 Univariate factorization over the integers
- 5 Two or more variables

- $\mathbb{F}_p := \{0,\dots,p-1\} \text{ with addition } (a+b) \text{ } \mathrm{rem} \text{ } p \text{, negation } \\ -a = p-a \text{ (for } a \neq 0 \text{), and multiplication } (a \cdot b) \text{ } \mathrm{rem} \text{ } p. \\ \text{Examples: } 3+5=1,-2=5 \text{, and } 3 \cdot 5=1 \text{ in } \mathbb{F}_7.$
- Every nonzero element $a \in \mathbb{F}_p$ has a multiplicative inverse: EEA in \mathbb{Z} computes 1 = sp + ta, so $ta \operatorname{rem} p = (sp + ta) \operatorname{rem} p = 1$. Thus: \mathbb{F}_p is a field.
- **Example:** $gcd(7,3) = 1 = 1 \cdot 7 2 \cdot 3$, so $3^{-1} = -2 = 5$ in \mathbb{F}_7 .
- Cost for one arithmetic operation in \mathbb{F}_p in word RAM model:

	asymptotically fast
$O(\log p)$	$O(\log p)$
$O(\log^2 p)$	$O(M(\log p))$
$O(\log^2 p)$	$O(M(\log p) \log \log p)$

- $\mathbb{F}_p := \{0, \dots, p-1\}$ with addition (a+b) rem p, negation -a = p-a (for $a \neq 0$), and multiplication $(a \cdot b) \text{ rem } p$. Examples: 3+5=1, -2=5, and $3\cdot 5=1$ in \mathbb{F}_7 .
- Every nonzero element $a \in \mathbb{F}_p$ has a multiplicative inverse: EEA in \mathbb{Z} computes 1 = sp + ta, so ta rem p = (sp + ta) rem p = 1. Thus: \mathbb{F}_p is a field.
- **Example:** $gcd(7,3) = 1 = 1 \cdot 7 2 \cdot 3$, so $3^{-1} = -2 = 5$ in \mathbb{F}_7 .
- Cost for one arithmetic operation in \mathbb{F}_p in word RAM model:

	asymptotically fast
$O(\log p)$	$O(\log p)$
$O(\log^2 p)$	$O(M(\log p))$
$O(\log^2 p)$	$O(M(\log p) \log \log p)$

- $\mathbb{F}_p := \{0, \dots, p-1\}$ with addition (a+b) rem p, negation -a = p-a (for $a \neq 0$), and multiplication $(a \cdot b) \text{ rem } p$. Examples: 3+5=1, -2=5, and $3\cdot 5=1$ in \mathbb{F}_7 .
- Every nonzero element $a \in \mathbb{F}_p$ has a multiplicative inverse: EEA in \mathbb{Z} computes 1 = sp + ta, so ta rem p = (sp + ta) rem p = 1. Thus: \mathbb{F}_p is a field.
- **Example:** $gcd(7,3) = 1 = 1 \cdot 7 2 \cdot 3$, so $3^{-1} = -2 = 5$ in \mathbb{F}_7 .
- Cost for one arithmetic operation in \mathbb{F}_p in word RAM model:

	asymptotically fast
$O(\log p)$	$O(\log p)$
$O(\log^2 p)$	$O(M(\log p))$
$O(\log^2 p)$	$O(M(\log p) \log \log p)$

- $\mathbb{F}_p := \{0, \dots, p-1\}$ with addition (a+b) rem p, negation -a = p-a (for $a \neq 0$), and multiplication $(a \cdot b) \text{ rem } p$. Examples: 3+5=1, -2=5, and $3\cdot 5=1$ in \mathbb{F}_7 .
- Every nonzero element $a \in \mathbb{F}_p$ has a multiplicative inverse: EEA in \mathbb{Z} computes 1 = sp + ta, so $ta \operatorname{rem} p = (sp + ta) \operatorname{rem} p = 1$. Thus: \mathbb{F}_p is a field.
- **Example:** $gcd(7,3) = 1 = 1 \cdot 7 2 \cdot 3$, so $3^{-1} = -2 = 5$ in \mathbb{F}_7 .
- Cost for one arithmetic operation in \mathbb{F}_p in word RAM model:

	classical	asymptotically fast
+/-	$O(\log p)$	$O(\log p)$
•	$O(\log^2 p)$	$O(M(\log p))$
-1	$O(\log^2 p)$	$O(M(\log p) \log \log p)$

Fermat's Little Theorem

$$a^p = a$$
 for all $a \in \mathbb{F}_p$

Proof: Induction on a and the fact that $\binom{p}{j}$ is divisible by p for 0 < j < p.

Note: The polynomial $x^p-x\in\mathbb{F}_p[x]$ is not the zero polynomial but vanishes at all points $a\in\mathbb{F}_p$.

Exercise: Devise a method to compute inverses in \mathbb{F}_p using FLT instead EEA.

Fermat's Little Theorem

$$a^p = a$$
 for all $a \in \mathbb{F}_p$

Proof: Induction on a and the fact that $\binom{p}{j}$ is divisible by p for 0 < j < p.

Note: The polynomial $x^p-x\in\mathbb{F}_p[x]$ is not the zero polynomial but vanishes at all points $a\in\mathbb{F}_p$.

Exercise: Devise a method to compute inverses in \mathbb{F}_p using FLT instead EEA.

Answer: if a = 0 then $a^{p-1} = 1$, so $a^{-1} = a^{p-2}$.

Univariate factorization over finite fields

 $f \in \mathbb{F}_p[x]$ monic, $\deg f = n > 1$

- Squarefree factorization: $f = f_1^1 \cdots f_n^n$ such that f_i monic squarefree (i.e., $g^2 \nmid f_i$ for all nonconstant polynomials $g \in \mathbb{F}_p[x]$) and $\gcd(f_i, f_j) = 1$ for $i \neq j$.
- Distinct-degree factorization: g monic squarefree, $g = g_1 \cdots g_n$ such $h \mid g_i \implies \deg h = i$ for all nonconstant polynomials $h \in \mathbb{F}_p[x]$ (equal-degree polynomial).
- Equal-degree factorization: h monic squarefree equal-degree polynomial of degree n = ki, compute the monic irreducible factors h_1, \ldots, h_k of degree i such that $h = h_1 \cdots h_k$.

Univariate factorization over finite fields

 $f \in \mathbb{F}_p[x]$ monic, $\deg f = n > 1$

- Squarefree factorization: $f = f_1^1 \cdots f_n^n$ such that f_i monic squarefree (i.e., $g^2 \nmid f_i$ for all nonconstant polynomials $g \in \mathbb{F}_p[x]$) and $\gcd(f_i, f_j) = 1$ for $i \neq j$.
- Distinct-degree factorization: g monic squarefree, $g = g_1 \cdots g_n$ such $h \mid g_i \implies \deg h = i$ for all nonconstant polynomials $h \in \mathbb{F}_p[x]$ (equal-degree polynomial).
- **E** Equal-degree factorization: h monic squarefree equal-degree polynomial of degree n = ki, compute the monic irreducible factors h_1, \ldots, h_k of degree i such that $h = h_1 \cdots h_k$.

Univariate factorization over finite fields

 $f \in \mathbb{F}_p[x]$ monic, $\deg f = n > 1$

- Squarefree factorization: $f = f_1^1 \cdots f_n^n$ such that f_i monic squarefree (i.e., $g^2 \nmid f_i$ for all nonconstant polynomials $g \in \mathbb{F}_p[x]$) and $\gcd(f_i, f_j) = 1$ for $i \neq j$.
- Distinct-degree factorization: g monic squarefree, $g = g_1 \cdots g_n$ such $h \mid g_i \implies \deg h = i$ for all nonconstant polynomials $h \in \mathbb{F}_p[x]$ (equal-degree polynomial).
- Equal-degree factorization: h monic squarefree equal-degree polynomial of degree n = ki, compute the monic irreducible factors h_1, \ldots, h_k of degree i such that $h = h_1 \cdots h_k$.

Meta-algorithm

Factorization in various domains

Squarefree factorization

F field (finite or not), $f\in F[x]$ monic with $\deg f=n>1$ and squarefree decomposition $f=f_1^1\cdots f_n^n.$ (Also assume n>p if $\mathbb{F}_p\subseteq F.$) Then

$$f' = \frac{\partial f}{\partial x} = f_1^0 \cdots f_n^{n-1} \cdot \underbrace{(f_1' f_2 \cdots f_n + \dots + n f_1 \cdots f_{n-1} f_n')}_{g}$$

The assumptions about the squarefree decomposition imply that $\gcd(f_i,g)=1$ for all i, and therefore

$$\gcd(f, f') = f_1^0 \cdots f_n^{n-1}.$$

Let $h = f_1 \cdots f_n$, the squarefree part of f. Then

$$h' = f_1' f_2 \cdots f_n + \ldots + f_1 \cdots f_{n-1} f_n'$$

and

$$f_i = \gcd(h, g - ih')$$

Example

Let $f = x^4 + x^3 = x^3(x+1)$. Expect to find $f_1 = x+1$, $f_3 = x$, and $f_2 = f_4 = 1$.

- $f' = 4x^3 + 3x^2$
- $\gcd(f, f') = x^2$
- $g = f'/\gcd(f, f') = 4x + 3$
- $h = f/\gcd(f, f') = x^2 + x$
- h' = 2x + 1
- $\gcd(h, g h') = \gcd(x^2 + x, 2x + 2) = x + 1 = f_1$
- $\gcd(h, g 2h') = \gcd(x^2 + x, 1) = 1 = f_2$
- $\gcd(h, g 3h') = \gcd(x^2 + x, -2x) = x = f_3$
- $\gcd(h, g 4h') = \gcd(x^2 + x, -4x 1) = 1 = f_4$

Yun's algorithm

Input: $f \in F[x] \setminus \{0\}$ monic, $\deg f = n$

Output: Monic squarefree decomposition $f = f_1^1 \cdot \cdot \cdot f_n^n$

$$1 g_0 \leftarrow \frac{f'}{\gcd(f, f')}, \quad h \leftarrow \frac{f}{\gcd(f, f')}$$

- $\textbf{2} \ \, \text{for} \ \, i=1,\ldots,n \qquad \qquad \text{do}$
- $g_i \leftarrow g_{i-1} h'$
- $f_i \leftarrow \gcd(h, g_i)$

6 return f_1, f_2, \ldots, f_n

Yun's algorithm

Input: $f \in F[x] \setminus \{0\}$ monic, $\deg f = n$

Output: Monic squarefree decomposition $f = f_1^1 \cdots f_n^n$

$$1 g_0 \leftarrow \frac{f'}{\gcd(f, f')}, \quad h \leftarrow \frac{f}{\gcd(f, f')}$$

- 2 for $i=1,\ldots,n$ while $h\neq 1$ do
- $g_i \leftarrow g_{i-1} h'$
- $f_i \leftarrow \gcd(h, g_i)$
- $b \leftarrow \frac{h}{f_i}, \quad g_i \leftarrow \frac{g_i}{f_i}$
- **6** return $f_1, f_2, \dots, 1, 1$

Cost dominated by step 1: $O(n^2)$ classical / $O(M(n) \log n)$ fast

Distinct-degree factorization

Fermat's Little Theorem:
$$x^p-x=\prod_{a\in\mathbb{F}_p}(x-a)=\prod_{\substack{w\text{ monic irreducible}\\\deg w=1}}w$$

Generalization (Gauß): For
$$i\in\mathbb{N}$$
, $x^{p^i}-x=\prod_{\substack{w \text{ monic irreducible} \\ (\deg w)|i}}w$

Algorithm: Given monic squarefree $g\in \mathbb{F}_p[x]$, for $i=1,2,\ldots$ compute $\gcd(x^{p^i}-x,g)$ and remove it from g

Input: $g\in\mathbb{F}_p[x]\setminus\{0\}$ monic squarefree, $\deg g=n$ Output: Monic distinct-degree decomposition $g=g_1\cdots g_n$

- $1 \quad a_0 \leftarrow x$
- **2** for $i \ge 1$ while $\deg g \ge 2i$ do
- $a_i \leftarrow a_{i-1}^p \text{ rem } g \quad (= x^{p^i} \text{ rem } g)$
- $g_i \leftarrow \gcd(g, a_i x)$
- 6 if g = 1then return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1$ else return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1, g, 1, \ldots, 1$

Input: $g\in\mathbb{F}_p[x]\setminus\{0\}$ monic squarefree, $\deg g=n$ Output: Monic distinct-degree decomposition $g=g_1\cdots g_n$

- $1 \quad a_0 \leftarrow x$
- **2** for $i \ge 1$ while $\deg g \ge 2i$ do

$$a_i \leftarrow a_{i-1}^p \text{ rem } g \quad (= x^{p^i} \text{ rem } g)$$

$$g_i \leftarrow \gcd(g, a_i - x)$$

6 if
$$g=1$$

then return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1$
else return $q_1, q_2, \ldots, q_{i-1}, 1, \ldots, 1, q, 1, \ldots, 1$

Input: $g \in \mathbb{F}_p[x] \setminus \{0\}$ monic squarefree, $\deg g = n$ Output: Monic distinct-degree decomposition $g = g_1 \cdots g_n$

- $1 \quad a_0 \leftarrow x$
- **2** for $i \ge 1$ while $\deg g \ge 2i$ do
- $a_i \leftarrow a_{i-1}^p \text{ rem } g \quad (= x^{p^i} \text{ rem } g)$
- $g_i \leftarrow \gcd(g, a_i x)$
- 6 if g=1then return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1$ else return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1, g, 1, \ldots, 1$

$$g_i \leftarrow \gcd(g, a_i - x)$$

$$g \leftarrow \frac{g}{g_i}, \quad a_i \leftarrow a_i \text{ rem } g$$

6 if
$$g=1$$

then return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1$
else return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1, g, 1, \ldots, 1$

Input: $g\in\mathbb{F}_p[x]\setminus\{0\}$ monic squarefree, $\deg g=n$ Output: Monic distinct-degree decomposition $g=g_1\cdots g_n$

- $1 \quad a_0 \leftarrow x$
- **2** for $i \ge 1$ while $\deg g \ge 2i$ do
- $a_i \leftarrow a_{i-1}^p \text{ rem } g \quad (= x^{p^i} \text{ rem } g)$
- $g_i \leftarrow \gcd(g, a_i x)$
- $g \leftarrow \frac{g}{g_i}, \quad a_i \leftarrow a_i \text{ rem } g$
- 6 if g=1then return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1$ else return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1, g, 1, \ldots$

Input: $g\in\mathbb{F}_p[x]\setminus\{0\}$ monic squarefree, $\deg g=n$ Output: Monic distinct-degree decomposition $g=g_1\cdots g_n$

- $1 \quad a_0 \leftarrow x$
- **2** for $i \ge 1$ while $\deg g \ge 2i$ do
- $a_i \leftarrow a_{i-1}^p \text{ rem } g \quad (= x^{p^i} \text{ rem } g)$
- $g_i \leftarrow \gcd(g, a_i x)$
- $g \leftarrow \frac{g}{g_i}, \quad a_i \leftarrow a_i \text{ rem } g$
- 6 if g=1then return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1$ else return $q_1, q_2, \ldots, q_{i-1}, 1, \ldots, 1, q, 1, \ldots, 1$

Input: $g \in \mathbb{F}_p[x] \setminus \{0\}$ monic squarefree, $\deg g = n$ **Output**: Monic distinct-degree decomposition $g = g_1 \cdots g_n$

- $1 \quad a_0 \leftarrow x$
- **2** for $i \ge 1$ while $\deg g \ge 2i$ do
- $a_i \leftarrow a_{i-1}^p \text{ rem } g \quad (= x^{p^i} \text{ rem } g)$
- $g_i \leftarrow \gcd(g, a_i x)$
- $g \leftarrow \frac{g}{g_i}, \quad a_i \leftarrow a_i \text{ rem } g$
- 6 if g=1then return $g_1, g_2, \ldots, g_{i-1}, 1, \ldots, 1$ else return $q_1, q_2, \ldots, q_{i-1}, 1, \ldots, 1, q, 1, \ldots, 1$

Step 2 loop invariant:

$$w \in \mathbb{F}_p[x]$$
 and $\deg w \ge 1$ and $w \mid g \implies \deg w \ge i$

Example

Let
$$g=x^6+x^3-x^2-x=x(x+1)(x-1)(x^3+x+1)\in \mathbb{F}_7[x].$$
 We expect to find $g_1=x^3-x$, $g_3=x^3+x+1$, and $g_2=g_4=g_5=g_6=1.$

- $a_0 \leftarrow x$
- $i = 1 \text{ and } \deg g = 6 \ge 2 \cdot 1$
- $a_1 \leftarrow x^7 \text{ rem } x^6 + x^3 x^2 x = -x^4 + x^3 + x^2$
- $g_1 \leftarrow \gcd(a_1 x, x^6 + x^3 x^2 = x) = x^3 x$

5
$$g \leftarrow \frac{x^6 + x^3 - x^2 - x}{x^3 - x} = x^3 + x + 1$$
, $a_1 \leftarrow a_1 \text{ rem } x^3 + x + 1 = 2x^2 - 1$

- i = 2 and $\deg g = 3 < 2 \cdot 2$
- 6 return $x^3 x, 1, x^3 + x + 1, 1, 1, 1$

Best done using MAPLE or other CAS

Cost analysis

$$g \in \mathbb{F}_p[x] \setminus \{0\}$$
 monic squarefree, $\deg g = n$

- 2 at most $\frac{n}{2}$ iterations of:
- 3 $a_i \leftarrow a_{i-1}^p \text{ rem } g \text{ using } square\text{-and-multiply:} \ O(\mathsf{M}(n)\log p) \text{ / } O(n^2\log p) \text{ classical}$
- $g_i \leftarrow \gcd(a_i x, g) : O(\mathsf{M}(n) \log n) / O(n^2)$ classical
- $g \leftarrow \frac{g}{g_i}$ and $a_i \leftarrow a_i \text{ rem } g: O(\mathsf{M}(n)) / O(n^2)$ classical

Total cost: $O(n \operatorname{M}(n) \log(np)) / O(n^3 \log p)$ classical

Worst case: input is irreducible

Modular root finding I

p>2 odd prime, $h=(x-a_1)\cdots(x-a_n)\in\mathbb{F}_p[x] \text{ with } n>1 \text{ and } a_i\neq a_j \text{ for } i\neq j \text{ Goal: find } a_1,\ldots,a_n$

Fermat's Little Theorem: For $c \in \mathbb{F}_p$,

$$0 = c^{p} - c = c(c^{\frac{p-1}{2}} - 1)(c^{\frac{p-1}{2}} + 1)$$

So either c=0 or $c^{\frac{p-1}{2}}=1$ or $c^{\frac{p-1}{2}}=-1$, with probabilities $\frac{1}{p}$ or $\frac{1}{2}(1-\frac{1}{p})$, respectively.

Modular root finding II

$$p>2$$
 odd prime, $h=(x-a_1)\cdots(x-a_n)\in \mathbb{F}_p[x]$ with $n>1$ and $a_i\neq a_j$ for $i\neq j$

Choose $b \in \mathbb{F}_p[x]$ with $\deg b < n$ uniformly at random. By the uniqueness of Lagrange interpolation, $b(a_i)$ is a uniformly random element of \mathbb{F}_p and independent of $b(a_j)$ for $i \neq j$. Thus $b(a_i)^{\frac{p-1}{2}} = 1$ with probability $\frac{1}{2}(1-\frac{1}{p})$, and the probability that

$$b(a_i)^{\frac{p-1}{2}} = b(a_j)^{\frac{p-1}{2}}$$
 for all i, j is

$$\left(\frac{1}{p}\right)^n + 2\left(\frac{1}{2}\left(1 - \frac{1}{p}\right)\right)^n < 2^{1-n}\frac{1}{p} + 2^{1-n}\left(1 - \frac{n}{p}\right) < 2^{1-n} \le \frac{1}{2}.$$

Modular root finding III

$$\begin{array}{l} p>2 \text{ odd prime, } b \in \mathbb{F}_p[x], \\ h=(x-a_1)\cdots(x-a_n) \in \mathbb{F}_p[x] \text{ with } n>1 \text{ and } a_i \neq a_j \text{ for } i \neq j \\ \\ \forall i \ b(a_i)=0 &\iff b \text{ rem } h=0 \\ &\iff \gcd(h,b)=h, \\ \\ \forall i \ b(a_i) \neq 0 &\iff \gcd(h,b)=1, \\ \\ \forall i \ b(a_i)^{\frac{p-1}{2}}=1 &\iff (b^{\frac{p-1}{2}}-1) \text{ rem } h=0 \\ &\iff \gcd(h,b^{\frac{p-1}{2}}-1)=b^{\frac{p-1}{2}}-1, \\ \\ \forall i \ b(a_i)^{\frac{p-1}{2}} \neq 1 &\iff \gcd(h,b^{\frac{p-1}{2}}-1)=1. \end{array}$$

Algorithm: Choose b with $\deg b < n$ at random and compute $\gcd(h,b)$ and $\gcd(h,b^{\frac{p-1}{2}}-1)$. This will split h with probability $>\frac{1}{2}$. Recurse.

Examples

Let $h = x^3 - x \in \mathbb{F}_7[x]$.

- If $b \in \mathbb{F}_p$, then $\gcd(h, b) \in \{1, h\}$ and $\gcd(h, b^{\frac{p-1}{2}} 1) \in \{1, h\}$.
- If $b \in \{x, x+1, x-1\}$, then gcd(h, b) = b splits h.
- If b = x + 2, then gcd(h, b) = 1, $b^{\frac{p-1}{2}} = b^3 = x^3 x^2 2x + 1$ and $gcd(h, b^3 1) = x^2 + x$ splits h.
- If $b = x^2 + 1$, then gcd(h, b) = 1, $b^{\frac{p-1}{2}} = b^3 = x^6 + 3x^4 + 3x^2 + 1$ and $gcd(h, b^3 1) = h$.
- If $b=-x^2-1$, then $\gcd(h,b)=1$, $b^{\frac{p-1}{2}}=b^3=-x^6-3x^4-3x^2-1$ and $\gcd(h,b^3-1)=1$.

Cantor-Zassenhaus algorithm

Input: $h\in \mathbb{F}_p[x]$ monic squarefree with all irreducible factors of degree 1, where p>2 and $1\leq n=\deg h$

Output: The monic irreducible factors $h_1, \ldots, h_{n/i}$ of h

- **1** if n=1 then return h
- **2** Choose $b \in \mathbb{F}_p[x]$ with $0 < \deg b < n$ uniformly at random
- $u \leftarrow \gcd(h, b)$
- 4 if $u \neq 1$ then recurse on both u and on $\frac{h}{u}$ and return the combined results
- $v \leftarrow b^{\frac{p-1}{2}} \operatorname{rem} h, \quad v \leftarrow \gcd(h, v)$
- **6** if $v \in \{1, h\}$ then go back to step 2 and repeat
- **7** recurse on both v and on $\frac{h}{v}$ and return the combined results

Cantor-Zassenhaus algorithm

Root finding algorithm generalizes to equal-degree factorization

Input: $h \in \mathbb{F}_p[x]$ monic squarefree with all irreducible factors of degree \pmb{i} , where p>2 and $1 \leq \pmb{i} \mid \pmb{n} = \deg h$

Output: The monic irreducible factors $h_1, \ldots, h_{n/i}$ of h

- **1** if n = i then return h
- **2** Choose $b \in \mathbb{F}_p[x]$ with $0 < \deg b < n$ uniformly at random
- $u \leftarrow \gcd(h, b)$
- 4 if $u \neq 1$ then recurse on both u and on $\frac{h}{u}$ and return the combined results
- **6** if $v \in \{1, h\}$ then go back to step 2 and repeat
- **7** recurse on both v and on $\frac{h}{v}$ and return the combined results

Cost analysis

p>2 prime, $h\in\mathbb{F}_p[x]$ monic squarefree with all irreducible factors of degree i, where $1\leq i\mid n=\deg h$ (similar algorithm for p=2 exists)

- $\operatorname{gcd}(h,b)$: $O(\operatorname{M}(n)\log n) \operatorname{/} O(n^2)$ classical
- 5 $v \leftarrow b^{\frac{p^i-1}{2}} \operatorname{rem} h \text{ via square-and-multiply:}$ $O(i \mathsf{M}(n) \log p) / O(i n^2 \log p) \text{ classical}$ $\gcd(h, v) \colon O(\mathsf{M}(n) \log n) / O(n^2) \text{ classical}$
- **6** Expected number of iterations: ≤ 2
- **7** Expected recursion depth: $O(\log \frac{n}{i})$

Expected total cost: $O(iM(n) \log(np)) / O(in^2 \log(np))$ classical

Worst case: $i = \frac{n}{2}$

Probabilistic vs deterministic EDF

- There is no known deterministic algorithm for equal-degree factorization that runs in time polyonmial in n and $\log p$.
- In fact, there is no known deterministic polynomial time algorithm for factoring x^2-a , i.e., computing $\sqrt{a} \in \mathbb{F}_p$, if $a \in \mathbb{F}_p$ is a square and $4 \mid (p-1)$.
- Quest for deterministic polynomial time factoring is of purely theoretical interest; the probabilistic algorithms are highly efficient in practice.

Special case: root finding

Input: $f \in \mathbb{F}_p[x] \setminus \{0\}$ monic, where p > 2 and $\deg f = n < p$ **Output**: the distinct roots $a_1, \ldots, a_r \in \mathbb{F}_p$ of f

- $\mathbf{1} \ g \leftarrow \frac{f}{\gcd(f, f')}$
- $a \leftarrow x^p \text{ rem } g$
- $h \leftarrow \gcd(a x, g)$
- **4 call** the Cantor-Zassenhaus algorithm with input h and i-1 and return its result

(Expected) cost: $O(M(n) \log(pn)) / O(n^2 \log p)$ classical

Special case: irreducibility test

Input: $f \in \mathbb{F}_p[x] \setminus \{0\}$ monic, where p > 2 and $\deg f = n$ **Output**: *true* if f is irreducible and *false* otherwise

- **Sutput:** *true* if f is irreducible and *false* otherwise **1** if $gcd(f, f') \neq 1$ then return false
 - if x^{p^n} now $f \neq x$ then return follows
- 2 if x^{p^n} rem $f \neq x$ then return false
- **3** for every prime divisor $d \in \mathbb{N}$ of n do
- $a_d \leftarrow x^{p^{n/d}} \operatorname{rem} f$
- if $gcd(a_d x, f) \neq 1$ then return false
- 6 return true

Cost: $O(n \operatorname{M}(n) \log(pn)) / O(n^3 \log p)$ classical

State of the art: factoring in $\mathbb{F}_p[x]$

SQF + DDF + EDF	arithmetic RAM	word RAM
classical Cantor & Zassenhaus	$n^3 \log p$	$n^3 \log^3 p$
fast Cantor	$n^2 \log p$	$n^2 \log^2 p$
& Zassenhaus	9 .	2
von zur Gathen & Shoup	$n^2 + n \log p$	$n^2 \log p + n \log^2 p$
Kaltofen & Shoup	$n^{1.815}\log^{0.407}p$	$n^{1.815} \log^{1.407} p$
Kedlaya & Umans		$n^{1.5}\log p + n\log^2 p$

Ignoring constants and factors $\log n$ and $\log\log p$

Main ingredients:

blocking strategy and fast modular composition $g(h) \operatorname{rem} f$

Outline

- 1 Introduction
- 2 Univariate GCDs
- 3 Univariate factorization over finite fields
- 4 Univariate factorization over the integers
 - Hensel lifting
 - Factor combination
- 5 Two or more variables

$f \in \mathbb{Q}[x]$ monic nonconstant squarefree

Main idea:

- \blacksquare Choose ``small'' prime p>2 and factor f in $\mathbb{F}_p[x]$
- Lift the factorization to one modulo p^k for k large enough
- lacksquare Combine some modular factors to obtain factors in $\mathbb{Q}[x]$

- Need to choose a "good" prime p such that it does not divide the denominator of f and such that f remains squarefree in $\mathbb{F}_p[x]$
- How large is ``large enough''?
- How to determine the denominators of the factors?

$f \in \mathbb{Q}[x]$ monic nonconstant squarefree

Main idea:

- \blacksquare Choose ``small'' prime p>2 and factor f in $\mathbb{F}_p[x]$
- Lift the factorization to one modulo p^k for k large enough
- lacksquare Combine some modular factors to obtain factors in $\mathbb{Q}[x]$

- Need to choose a "good" prime p such that it does not divide the denominator of f and such that f remains squarefree in $\mathbb{F}_p[x]$
- How large is ``large enough''?
- How to determine the denominators of the factors?

 $f \in \mathbb{Q}[x]$ monic nonconstant squarefree

Main idea:

- \blacksquare Choose ``small'' prime p>2 and factor f in $\mathbb{F}_p[x]$
- Lift the factorization to one modulo p^k for k large enough
- \blacksquare Combine some modular factors to obtain factors in $\mathbb{Q}[x]$

- Need to choose a "good" prime p such that it does not divide the denominator of f and such that f remains squarefree in $\mathbb{F}_p[x]$
- How large is ``large enough''?
- How to determine the denominators of the factors?

 $f \in \mathbb{Q}[x]$ monic nonconstant squarefree

Main idea:

- \blacksquare Choose ``small'' prime p>2 and factor f in $\mathbb{F}_p[x]$
- Lift the factorization to one modulo p^k for k large enough
- \blacksquare Combine some modular factors to obtain factors in $\mathbb{Q}[x]$

Remarks:

- Need to choose a ``good'' prime p such that it does not divide the denominator of f and such that f remains squarefree in $\mathbb{F}_p[x]$
- How large is ``large enough''?
- How to determine the denominators of the factors?

 $f \in \mathbb{Q}[x]$ monic nonconstant squarefree

Main idea:

- lacksquare Choose ``small'' prime p>2 and factor f in $\mathbb{F}_p[x]$
- Lift the factorization to one modulo p^k for k large enough
- \blacksquare Combine some modular factors to obtain factors in $\mathbb{Q}[x]$

Remarks:

- Need to choose a ``good'' prime p such that it does not divide the denominator of f and such that f remains squarefree in $\mathbb{F}_p[x]$
- How large is "large enough"?
- How to determine the denominators of the factors?

 $f \in \mathbb{Q}[x]$ monic nonconstant squarefree

Main idea:

- \blacksquare Choose ``small'' prime p>2 and factor f in $\mathbb{F}_p[x]$
- Lift the factorization to one modulo p^k for k large enough
- \blacksquare Combine some modular factors to obtain factors in $\mathbb{Q}[x]$

Remarks:

- Need to choose a ``good'' prime p such that it does not divide the denominator of f and such that f remains squarefree in $\mathbb{F}_p[x]$
- How large is "large enough"?
- How to determine the denominators of the factors?

Hensel's lemma I

 $f,g,h\in\mathbb{Q}[x]$ monic, $p\in\mathbb{N}$ prime not dividing any denominators. Notation: write $f\equiv gh \bmod p$ to mean f=gh in $\mathbb{F}_p[x]$, more precisely: $p\mid (f-gh)$.

Hensel's lemma If gcd(g, h) = 1 in $\mathbb{F}_p[x]$, then for any $k \in \mathbb{N}$ there exist monic $g_k, h_k \in \mathbb{Q}[x]$ such that

$$g_k \equiv g \bmod p$$
, $h_k \equiv h \bmod p$, and $f \equiv gh \bmod p^k$.

Moreover, g_k and h_k are unique modulo p^k .

Proof: Induction on k.

Hensel's lemma II

 $k\in\mathbb{N}$, $f,g_k,h_k\in\mathbb{Q}[x]$ monic, $p\in\mathbb{N}$ prime not dividing any denominators, $\gcd(g_k,h_k)=1$ in $\mathbb{F}_p[x]$, and $f\equiv g_kh_k \bmod p^k$.

Construction of g_{k+1} , h_{k+1} :

- $e_k = f g_k h_k$
- **2** EEA computes $s,t\in\mathbb{Z}[x]$ such that $sg_k+th_k=1$ in $\mathbb{F}_p[x]$
- $\bar{g}=g_k+te_k$ and $h=h_k+se_k$

Hensel's lemma II

 $k\in\mathbb{N}$, $f,g_k,h_k\in\mathbb{Q}[x]$ monic, $p\in\mathbb{N}$ prime not dividing any denominators, $\gcd(g_k,h_k)=1$ in $\mathbb{F}_p[x]$, and $f\equiv g_kh_k \bmod p^k$.

Construction of g_{k+1} , h_{k+1} :

- $e_k = f g_k h_k$
- **2** EEA computes $s,t\in\mathbb{Z}[x]$ such that $sg_k+th_k=1$ in $\mathbb{F}_p[x]$
- $\overline{g}=g_k+te_k$ and $h=h_k+se_k$

Hensel's lemma II

 $k \in \mathbb{N}$, $f, g_k, h_k \in \mathbb{Q}[x]$ monic, $p \in \mathbb{N}$ prime not dividing any denominators, $\gcd(g_k, h_k) = 1$ in $\mathbb{F}_p[x]$, and $f \equiv g_k h_k \bmod p^k$.

Construction of g_{k+1} , h_{k+1} :

- $e_k = f g_k h_k$
- **2** EEA computes $s, t \in \mathbb{Z}[x]$ such that $sg_k + th_k = 1$ in $\mathbb{F}_p[x]$
- $\bar{g}=g_k+te_k$ and $\bar{h}=h_k+se_k$

Then

$$f - \bar{g}\bar{h} = f - g_k h_k - g_k s e_k - h_k t e_k - s t e_k^2 = (1 - s g_k - t h_k) e_k - s t e_k^2$$

By assumption, $p^k \mid e$ and $p \mid 1 - sg_k - th_k$, and hence $p^{k+1} \mid (f - \bar{g}\bar{h})$.

Example

$$k = 1$$
, $f = x^3 + 14x^2 + 15x + 26$, $g_1 = x + 1$, $h_1 = x^2 + x + 2$, $p = 3$

$$e_1 = x^3 + 14x^2 + 15x + 26 - (x+1)(x^2 + x + 2)$$

$$= x^3 + 14x^2 + 15x + 26 - (x^3 + 2x^2 + 3x + 2)$$

$$= 12x^2 + 12x + 24 = 3 \cdot (4x^2 + 4x + 8)$$

- 2 s = x and t = 2 work: $x \cdot (x+1) + 2 \cdot (x^2 + x + 2) = 3x^2 + 3x + 4 \equiv 1 \mod 3$
- $\bar{q} = (x+1) + 2 \cdot (x^2 + x^2 + 2) = 3x^2 + 6x + 1 = 1 \text{ mod } 6$

$$\frac{3}{h} = (x^2 + x + 2) + x \cdot (12x^2 + 12x + 24) = 12x^3 + 13x^2 + 25x + 2$$

Check:

$$f - \bar{g}\bar{h} = x^3 + 14x^2 + 15x + 26$$

$$-(288x^5 + 612x^4 + 1513x^3 + 1310x^2 + 1275x + 98)$$

$$= -9 \cdot (32x^5 + 68x^4 + 168x^3 + 144x^2 + 140x + 8)$$

Issues

 $ar{g}, \bar{h}$ are not monic and their degrees are too high. Resolution:

$$q_k = te_k \text{ quo } g_k,$$

 $g_{k+1} = g_k + (te_k \text{ rem } g_k) = g_k + te_k - q_k g_k,$
 $h_{k+1} = h_k + se_k + q_k h_k.$

Then g_{k+1}, h_{k+1} are monic, $\deg g_{k+1} = \deg g_k$, $\deg h_{k+1} = \deg h_k$, and $g_{k+1}h_{k+1} \equiv \bar{g}\bar{h} \bmod p^{k+1}$.

■ Coefficient growth.

Resolution: reduce coefficients $\text{mod } p^{k+1}$

Issues

$$q_k = te_k \text{ quo } g_k,$$

 $g_{k+1} = g_k + (te_k \text{ rem } g_k) = g_k + te_k - q_k g_k,$
 $h_{k+1} = h_k + se_k + q_k h_k.$

Then g_{k+1}, h_{k+1} are monic, $\deg g_{k+1} = \deg g_k$, $\deg h_{k+1} = \deg h_k$, and $g_{k+1}h_{k+1} \equiv \bar{g}\bar{h} \bmod p^{k+1}$.

■ Coefficient growth. Resolution: reduce coefficients $mod p^{k+1}$

Example (continued)

$$k = 1$$
, $f = x^3 + 14x^2 + 15x + 26$, $g_1 = x + 1$, $h_1 = x^2 + x + 2$, $p = 3$

1
$$e_1 = x^3 + 14x^2 + 15x + 26 - (x+1)(x^2 + x + 2)$$

= $x^3 + 14x^2 + 15x + 26 - (x^3 + 2x^2 + 3x + 2)$
= $12x^2 + 12x + 24 \equiv 3x^2 + 3x + 6 \mod 3^2$

s = x and t = 2 work:

$$x \cdot (x+1) + 2 \cdot (x^2 + x + 2) = 3x^2 + 3x + 4 \equiv 1 \mod 3$$

3
$$q_1 = 2 \cdot (3x^2 + 3x + 6)$$
 quo $x + 1 = 6x$,
 $g_2 = (x+1) + 2 \cdot (3x^2 + 3x + 6) - 6x \cdot (x+1)$
 $= x + 13 \equiv x + 4 \mod 3^2$,
 $h_2 = (x^2 + x + 2) + x \cdot (3x^2 + 3x + 6) + 6x \cdot (x^2 + x + 2)$
 $= 9x^3 + 10x^2 + 19x + 2 \equiv x^2 + x + 2 \mod 3^2$

Check:
$$f - g_2 h_2 = x^3 + 14x^2 + 15x + 26 - (x+4)(x^2 + x + 2)$$

 $= x^3 + 14x^2 + 15x + 26 - (x^3 + 5x^2 + 6x + 8)$
 $= 9x^2 + 9x + 18$

- **1** call EEA to compute $s,t\in\mathbb{Z}[x]$ such that $sg_1+th_1=1$ in $\mathbb{F}_p[x]$
- 2 for i = 1, ..., k-1 do
- $e_i \leftarrow (f g_i h_i) \text{ rem } p^{i+1}$
- $q_i \leftarrow (te_i \text{ quo } g_i) \text{ rem } p^{i+1}$
- $g_{i+1} \leftarrow (g_i + te_i q_i g_i) \text{ rem } p^{i+1}$
- $b_{i+1} \leftarrow (h_i + se_i + q_ih_i) \text{ rem } p^{i+1}$
- 7 return g_k, h_k

- **1** call EEA to compute $s,t\in\mathbb{Z}[x]$ such that $sg_1+th_1=1$ in $\mathbb{F}_p[x]$
- **2** for i = 1, ..., k-1 do
- $e_i \leftarrow (f g_i h_i) \text{ rem } p^{i+1}$
- $q_i \leftarrow (te_i \text{ quo } g_i) \text{ rem } p^{i+1}$
- $q_{i+1} \leftarrow (q_i + te_i q_i q_i) \text{ rem } p^{i+1}$
- $b_{i+1} \leftarrow (h_i + se_i + q_i h_i) \text{ rem } p^{i+1}$
- 7 return g_k, h_k

- **1** call EEA to compute $s,t\in\mathbb{Z}[x]$ such that $sg_1+th_1=1$ in $\mathbb{F}_p[x]$
- **2** for i = 1, ..., k-1 do
- $e_i \leftarrow (f g_i h_i) \text{ rem } p^{i+1}$
- $q_i \leftarrow (te_i \text{ quo } g_i) \text{ rem } p^{i+1}$
- $g_{i+1} \leftarrow (g_i + te_i q_i g_i) \text{ rem } p^{i+1}$
- $b_{i+1} \leftarrow (h_i + se_i + q_ih_i) \text{ rem } p^{i+1}$
- 7 return g_k, h_k

- **1** call EEA to compute $s,t\in\mathbb{Z}[x]$ such that $sg_1+th_1=1$ in $\mathbb{F}_p[x]$
- **2** for i = 1, ..., k-1 do
- $e_i \leftarrow (f g_i h_i) \text{ rem } p^{i+1}$
- $q_i \leftarrow (te_i \text{ quo } g_i) \text{ rem } p^{i+1}$
- $g_{i+1} \leftarrow (g_i + te_i q_i g_i) \text{ rem } p^{i+1}$
- $b_{i+1} \leftarrow (h_i + se_i + q_ih_i) \text{ rem } p^{i+1}$
- 7 return g_k, h_k

- **1** call EEA to compute $s,t\in\mathbb{Z}[x]$ such that $sg_1+th_1=1$ in $\mathbb{F}_p[x]$
- **2** for i = 1, ..., k-1 do
- $e_i \leftarrow (f g_i h_i) \text{ rem } p^{i+1}$
- $q_i \leftarrow (te_i \text{ quo } g_i) \text{ rem } p^{i+1}$
- $g_{i+1} \leftarrow (g_i + te_i q_i g_i) \text{ rem } p^{i+1}$
- $b_{i+1} \leftarrow (h_i + se_i + q_ih_i) \text{ rem } p^{i+1}$
- 7 return g_k, h_k

- **1** call EEA to compute $s,t\in\mathbb{Z}[x]$ such that $sg_1+th_1=1$ in $\mathbb{F}_p[x]$
- **2** for i = 1, ..., k-1 do
- $e_i \leftarrow (f g_i h_i) \text{ rem } p^{i+1}$
- $q_i \leftarrow (te_i \text{ quo } g_i) \text{ rem } p^{i+1}$
- $g_{i+1} \leftarrow (g_i + te_i q_i g_i) \text{ rem } p^{i+1}$
- $6 h_{i+1} \leftarrow (h_i + se_i + q_ih_i) \text{ rem } p^{i+1}$
- 7 return g_k, h_k

- **1** call EEA to compute $s,t\in\mathbb{Z}[x]$ such that $sg_1+th_1=1$ in $\mathbb{F}_p[x]$
- **2** for i = 1, ..., k-1 do
- $e_i \leftarrow (f g_i h_i) \text{ rem } p^{i+1}$
- $q_i \leftarrow (te_i \text{ quo } g_i) \text{ rem } p^{i+1}$
- $g_{i+1} \leftarrow (g_i + te_i q_i g_i) \text{ rem } p^{i+1}$
- $b_{i+1} \leftarrow (h_i + se_i + q_ih_i) \text{ rem } p^{i+1}$
- 7 return g_k, h_k

Example (continued)

$$i = 2$$
, $f = x^3 + 14x^2 + 15x + 26$, $g_2 = x + 4$, $h_2 = x^2 + x + 2$, $p = 3$

- $e_2 = x^3 + 14x^2 + 15x + 26 (x+4)(x^2 + x + 2) = 9x^2 + 9x + 18$
- 2 s = x and t = 2 still work: $x \cdot (x+4) + 2 \cdot (x^2 + x + 2) = 3x^2 + 6x + 4 \equiv 1 \mod 3$
- 3 $q_2 = 2 \cdot (9x^2 + 9x + 18)$ quo $x + 4 = 18x 54 \equiv 18x \mod 3^3$, $g_3 = (x+4) + 2 \cdot (9x^2 + 9x + 18) - 18x \cdot (x+4)$ $= -55x + 40 \equiv x + 13 \mod 3^3$, $h_3 = (x^2 + x + 2) + x \cdot (9x^2 + 9x + 18) + 18x \cdot (x^2 + x + 2)$

$$h_3 = (x^2 + x + 2) + x \cdot (9x^2 + 9x + 18) + 18x \cdot (x^2 + x + 2)$$

= $27x^3 + 28x^2 + 54x + 2 \equiv x^2 + x + 2 \mod 3^3$

Check:
$$f - g_3 h_3 = x^3 + 14x^2 + 15x + 26 - (x+13)(x^2 + x + 2) = 0$$

Example (continued)

$$i = 2$$
, $f = x^3 + 14x^2 + 15x + 26$, $g_2 = x + 4$, $h_2 = x^2 + x + 2$, $p = 3$

- $e_2 = x^3 + 14x^2 + 15x + 26 (x+4)(x^2 + x + 2) = 9x^2 + 9x + 18$
- 2 s = x and t = 2 still work: $x \cdot (x+4) + 2 \cdot (x^2 + x + 2) = 3x^2 + 6x + 4 \equiv 1 \mod 3$
- 3 $q_2 = 2 \cdot (9x^2 + 9x + 18)$ quo $x + 4 = 18x 54 \equiv 18x \mod 3^3$, $g_3 = (x+4) + 2 \cdot (9x^2 + 9x + 18) - 18x \cdot (x+4)$ $= -55x + 40 \equiv x + 13 \mod 3^3$, $h_3 = (x^2 + x + 2) + x \cdot (9x^2 + 9x + 18) + 18x \cdot (x^2 + x + 2)$ $= 27x^3 + 28x^2 + 54x + 2 \equiv x^2 + x + 2 \mod 3^3$

Check: $f-g_3h_3=x^3+14x^2+15x+26-(x+13)(x^2+x+2)=0$ (In general, another stage is required after Hensel lifting.)

Cost analysis

 $p\in\mathbb{N}$ prime, $k\in\mathbb{N}$, $f\in\mathbb{Q}[x]$ monic nonconstant, $\deg f=n$, numerators and denominators of f absolutely bounded by p^k , $g_1,h_1\in\mathbb{Z}[x]$ with coefficients in $\{0,\ldots,p-1\}$

Counting word operations:

- 1 $O(nk\log^2 p)$ to reduce all coefficients of f modulo p EEA: $O(n^2\log^2 p)$
- \mathbf{z} k-1 iterations of:
- $(f g_i h_i) \text{ rem } p^{i+1} : O(n^2 k^2 \log^2 p)$
- $(te_i \text{ quo } g_i) \text{ rem } p^{i+1} \colon O(n^2k^2 \log^2 p)$
- $(g_i + te_i q_i g_i) \text{ rem } p^{i+1} : O(n^2 k^2 \log^2 p)$
- 6 $(h_i + se_i + q_ih_i)$ rem p^{i+1} : $O(n^2k^2\log^2 p)$

Total cost: $O(n^2k^3\log^2 p)$

Quadratic Hensel lifting

Main ingredient: lift from p^i tp p^{2i} in one step by also lifting s and t

Total cost:

- \bullet $O(\mathsf{M}(n)\log n\cdot\mathsf{M}(\log p)+n\cdot\mathsf{M}(\log p)\log\log p)$ for the EEA in $\mathbb{F}_p[x]$ and
- $O(M(n)M(k \log p))$ for the main loop, which is dominated by the cost for the last iteration

Ignoring constant and logarithmic factors, this corresponds to $nk\log p$ word operations, vs $n^2k^3\log p$ for the classical Hensel lifting algorithm.

Factors with negative integer coefficients

Hensel lifting to order k will always produce factors with nonnegative integer coefficients less than p^k .

Solution: When reducing modulo p^k , use symmetric coefficients in $\{-\frac{p^k-1}{2},\ldots,\frac{p^k-1}{2}\}$ instead of nonnegative coefficients in $\{0,\ldots,p^k-1\}$.

Example:
$$x^3 + 14x^2 + 15x + 26 \equiv x^3 - 13x^2 - 12x - 1 \mod 3^3$$

Factors with rational coefficients

 $f \in \mathbb{Q}[x]$ with $f \equiv f_1 \cdots f_r \mod p^k$ Determine common denominator $d \in \mathbb{N}$ such that $df \in \mathbb{Z}[x]$ Let $g_i = df_i \operatorname{rem} p^k$ for $1 \le i \le r$. Then $d^r f \equiv g_1 \cdots g_r \mod p^k$.

If $f=h_1\cdots h_r$ is the monic irreducible factorization in $\mathbb{Q}[x]$, then also $f\equiv h_1\cdots h_r \bmod p^k$, and the uniqueness of factorization modulo p and of Hensel lifting implies that $h_i\equiv \frac{g_i}{d}\equiv f_i \bmod p^k$, for all i, up to reordering.

Thus $g_i \equiv dh_i \bmod p^k$. It follows from a Lemma by Gauß that $dh_i \in \mathbb{Z}[x]$, and if k is large enough, then $|g - dh_i| < p^k$, which implies that $g = dh_i$ for all i.

Example

$$f=x^2-\frac{3}{2}x-1, \ p=3, \ k=2$$
 Then $f\equiv (x+1)(x-1) \mod 3$ and Hensel lifting yields $f\equiv f_1f_2\equiv (x-2)(x+4) \mod 3^2.$ Choosing $d=2$, we obtain $g_1=2(x-2)\equiv 2x-4 \mod 3^2$ and $g_2=2(x+4)\equiv 2x-1 \mod 3^2.$ Indeed, the factors of f in $\mathbb{Q}[x]$ are $h_1=x-2=\frac{g_1}{2}$ and $h_2=x+\frac{1}{2}=\frac{g_2}{2}.$

This is not the most efficient solution for rational coefficients; a better way is to use *rational number reconstruction* (the equivalent of Padé approximation in \mathbb{Z} , using the EEA)

How large is large enough?

$$f, f_1, \dots, f_r \in \mathbb{Z}[x]$$
 nonconstant squarefree, $\deg f = n$, $f = f_1 \cdots f_r$

Mignotte's factor bound: $||f_i||_{\infty} \leq \sqrt{n+1} \cdot 2^n ||f||_{\infty}$ for $1 \leq i \leq r$

Corollary: If

- $\blacksquare \ p \in \mathbb{N}$ prime and $k = 1 + \lfloor \log_p(\sqrt{n+1} \cdot 2^{n+1} \|f\|_\infty) \rfloor$
- $g_1, \ldots, g_r \in \mathbb{Z}[x]$ with symmetric coefficients such that $f \equiv g_1 \cdots g_r \mod p^k$

Then $rac{f_i}{\mathrm{lc}(f_i)}=rac{g_i}{\mathrm{lc}(g_i)}$ for $1\leq i\leq k$, up to reordering.

Swinnerton-Dyer polynomials

Can irreducible $f \in \mathbb{Q}[x]$ be reducible in $\mathbb{F}_p[x]$?

Yes, this is quite common. Actually, there are examples that are reducible modulo *every* prime $p \in \mathbb{N}$:

 $f=x^4+1$; its complex roots are the primitive 8th roots of unity $\varphi=e^{i\pi/4}, \varphi^3, \varphi^5, \varphi^7$. Note that $\varphi^2=i=\sqrt{-1}$ and $\varphi+\varphi^7=\sqrt{2}$.

- p = 2: $f \equiv (x+1)^4 \mod 2$
- $4 \mid (p-1)$: then there exists $a \in \mathbb{F}_p[x]$ such that $a^2 = -1$. Thus $f \equiv (x^2 + a)(x^2 a) \mod p$
- $4 \nmid (p-1)$: then either 2 or -2 is a square in \mathbb{F}_p . In the first case, $f \equiv (x^2 + bx + 1)(x^2 bx + 1) \mod p$, where $b^2 = 2$, and similarly in the second case.

Factor combination

p prime, $f \equiv g_1 \cdots g_s \bmod p^k$, $k \in \mathbb{N}$ large enough

Irreducible factor f_i of f in $\mathbb{Q}[x]$ may split into a $\prod_{j \in S} g_j$ for some subset

$$S \subset \{1, \dots, s\}$$

Factor combination: Try all possible such subsets S until all factors of f in $\mathbb{Q}[x]$ are found.

Worst case: f irreducible in $\mathbb{Q}[x] \to 2^s - 2$ trials

More efficient polynomial-time methods based on *lattice reduction* exist (Lenstra, Lenstra & Lovacz, van Hoeij, ...)

Input: $f \in \mathbb{Z}[x]$ squarefree of degree n > 0, $d = \mathrm{lc}(f)$ **Output**: $\{f_1, \dots, f_r\} \subset \mathbb{Q}[x]$, monic irreducible, with $f = df_1 \cdots f_r$

- $\begin{tabular}{ll} \textbf{1} & \textbf{Choose a prime } p \in \mathbb{N} \ \text{not dividing } d \ \text{and such that } f \ \text{remains } \\ & \text{squarefree in } \mathbb{F}_p[x] \\ \end{tabular}$
- $k \leftarrow 1 + \lfloor \log_p(d\sqrt{n+1} \cdot 2^{n+1} ||f||_{\infty}) \rfloor$
- 3 Factor f modulo p, yielding monic $h_1, \ldots, h_s \in \mathbb{Z}[x]$ with $f \equiv dh_1 \cdots h_s \mod p$
- 4 call Hensel lifting to obtain monic $g_1, \ldots, g_s \in \mathbb{Z}[x]$ with $f \equiv dg_1 \cdots g_s \bmod p^k$
- $T \leftarrow \{1, \ldots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow d \prod_{j \in S} g_j \text{ rem } p^k, v \leftarrow d \prod_{j \notin S} g_j \text{ rem } p^k$ (using symmetric coefficients)
- if df = uv in $\mathbb{Z}[x]$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{\frac{u}{d}\}$
- \circ return L

Input: $f \in \mathbb{Z}[x]$ squarefree of degree n > 0, $d = \operatorname{lc}(f)$

Output: $\{f_1,\ldots,f_r\}\subset \mathbb{Q}[x]$, monic irreducible, with $f=df_1\cdots f_r$

- $\begin{tabular}{ll} {\bf I} Choose a prime $p \in \mathbb{N}$ not dividing d and such that f remains squarefree in $\mathbb{F}_p[x]$$
- 3 Factor f modulo p, yielding monic $h_1,\ldots,h_s\in\mathbb{Z}[x]$ with $f\equiv dh_1\cdots h_s \bmod p$
- 4 call Hensel lifting to obtain monic $g_1, \ldots, g_s \in \mathbb{Z}[x]$ with $f \equiv dg_1 \cdots g_s \bmod p^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow d \prod_{j \in S} g_j \text{ rem } p^k, v \leftarrow d \prod_{j \notin S} g_j \text{ rem } p^k$ (using symmetric coefficients)
- if $df = uv \text{ in } \mathbb{Z}[x]$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{\frac{u}{d}\}$
- 9 return L


```
Input: f \in \mathbb{Z}[x] squarefree of degree n > 0, d = \operatorname{lc}(f)
Output: \{f_1, \dots, f_r\} \subset \mathbb{Q}[x], monic irreducible, with f = df_1 \cdots f_r
   1 Choose a prime p \in \mathbb{N} not dividing d and such that f remains
       squarefree in \mathbb{F}_n[x]
  k \leftarrow 1 + |\log_n(d\sqrt{n+1} \cdot 2^{n+1} ||f||_{\infty})|
  3 Factor f modulo p, yielding monic h_1, \ldots, h_s \in \mathbb{Z}[x] with
       f \equiv dh_1 \cdots h_s \mod p
  u \leftarrow d \prod g_i \operatorname{rem} p^k, v \leftarrow d \prod g_i \operatorname{rem} p^k
        if df = uv in \mathbb{Z}[x] then T \leftarrow T \setminus S, L \leftarrow L \cup \{\frac{u}{d}\}
```

イロトイ御トイミトイミト () 重

```
Input: f \in \mathbb{Z}[x] squarefree of degree n > 0, d = \mathrm{lc}(f)
Output: \{f_1, \dots, f_r\} \subset \mathbb{Q}[x], monic irreducible, with f = df_1 \cdots f_r
```

- I Choose a prime $p \in \mathbb{N}$ not dividing d and such that f remains squarefree in $\mathbb{F}_p[x]$
- $k \leftarrow 1 + \lfloor \log_p(d\sqrt{n+1} \cdot 2^{n+1} ||f||_{\infty}) \rfloor$
- 3 Factor f modulo p, yielding monic $h_1,\ldots,h_s\in\mathbb{Z}[x]$ with $f\equiv dh_1\cdots h_s \bmod p$
- **4 call** Hensel lifting to obtain monic $g_1, \ldots, g_s \in \mathbb{Z}[x]$ with $f \equiv dg_1 \cdots g_s \mod p^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow d \prod_{j \in S} g_j \text{ rem } p^k, v \leftarrow d \prod_{j \notin S} g_j \text{ rem } p^k$ (using symmetric coefficients)
- if df = uv in $\mathbb{Z}[x]$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{\frac{u}{d}\}$
- 9 return L

Input: $f \in \mathbb{Z}[x]$ squarefree of degree n > 0, $d = \mathrm{lc}(f)$ **Output**: $\{f_1, \dots, f_r\} \subset \mathbb{Q}[x]$, monic irreducible, with $f = df_1 \cdots f_r$

- **1** Choose a prime $p \in \mathbb{N}$ not dividing d and such that f remains squarefree in $\mathbb{F}_p[x]$
- $k \leftarrow 1 + \lfloor \log_p(d\sqrt{n+1} \cdot 2^{n+1} ||f||_{\infty}) \rfloor$
- 3 Factor f modulo p, yielding monic $h_1,\ldots,h_s\in\mathbb{Z}[x]$ with $f\equiv dh_1\cdots h_s \bmod p$
- **4 call** Hensel lifting to obtain monic $g_1, \ldots, g_s \in \mathbb{Z}[x]$ with $f \equiv dg_1 \cdots g_s \mod p^k$
- $T \leftarrow \{1, \ldots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow d \prod_{j \in S} g_j \text{ rem } p^k, v \leftarrow d \prod_{j \notin S} g_j \text{ rem } p^k$ (using symmetric coefficients)
- if $df = uv \text{ in } \mathbb{Z}[x]$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{\frac{u}{d}\}$
- $_{9}$ return L

Input: $f \in \mathbb{Z}[x]$ squarefree of degree n > 0, $d = \operatorname{lc}(f)$

Output: $\{f_1,\ldots,f_r\}\subset \mathbb{Q}[x]$, monic irreducible, with $f=df_1\cdots f_r$

- $k \leftarrow 1 + \lfloor \log_p(d\sqrt{n+1} \cdot 2^{n+1} ||f||_{\infty}) \rfloor$
- 3 Factor f modulo p, yielding monic $h_1,\ldots,h_s\in\mathbb{Z}[x]$ with $f\equiv dh_1\cdots h_s \bmod p$
- **4 call** Hensel lifting to obtain monic $g_1, \ldots, g_s \in \mathbb{Z}[x]$ with $f \equiv dg_1 \cdots g_s \mod p^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- 7 $u \leftarrow d \prod_{j \in S} g_j \text{ rem } p^k, v \leftarrow d \prod_{j \notin S} g_j \text{ rem } p^k$ (using symmetric coefficients)
- if $df = uv \text{ in } \mathbb{Z}[x]$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{\frac{u}{d}\}$
- 9 return L

Input: $f \in \mathbb{Z}[x]$ squarefree of degree n > 0, $d = \mathrm{lc}(f)$ **Output**: $\{f_1, \dots, f_r\} \subset \mathbb{Q}[x]$, monic irreducible, with $f = df_1 \cdots f_r$

- $\begin{tabular}{ll} \textbf{1} & \textbf{Choose a prime } p \in \mathbb{N} \ \text{not dividing } d \ \text{and such that } f \ \text{remains } \\ & \text{squarefree in } \mathbb{F}_p[x] \\ \end{tabular}$
- $k \leftarrow 1 + \lfloor \log_p(d\sqrt{n+1} \cdot 2^{n+1} ||f||_{\infty}) \rfloor$
- 3 Factor f modulo p, yielding monic $h_1,\ldots,h_s\in\mathbb{Z}[x]$ with $f\equiv dh_1\cdots h_s \bmod p$
- **4 call** Hensel lifting to obtain monic $g_1, \ldots, g_s \in \mathbb{Z}[x]$ with $f \equiv dg_1 \cdots g_s \mod p^k$
- $T \leftarrow \{1, \ldots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow d \prod_{j \in S} g_j \text{ rem } p^k, v \leftarrow d \prod_{j \notin S} g_j \text{ rem } p^k$ (using symmetric coefficients)
- if df = uv in $\mathbb{Z}[x]$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{\frac{u}{d}\}$
- \circ return L

Input: $f \in \mathbb{Z}[x]$ squarefree of degree n > 0, $d = \operatorname{lc}(f)$

Output: $\{f_1,\ldots,f_r\}\subset \mathbb{Q}[x]$, monic irreducible, with $f=df_1\cdots f_r$

- $\textbf{1} \ \, \text{Choose a prime } p \in \mathbb{N} \text{ not dividing } d \text{ and such that } f \text{ remains } \\ \text{squarefree in } \mathbb{F}_p[x]$
- 3 Factor f modulo p, yielding monic $h_1,\ldots,h_s\in\mathbb{Z}[x]$ with $f\equiv dh_1\cdots h_s \bmod p$
- **4 call** Hensel lifting to obtain monic $g_1, \ldots, g_s \in \mathbb{Z}[x]$ with $f \equiv dg_1 \cdots g_s \mod p^k$
- $T \leftarrow \{1, \ldots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow d \prod_{j \in S} g_j \text{ rem } p^k, v \leftarrow d \prod_{j \notin S} g_j \text{ rem } p^k$ (using symmetric coefficients)
- if df = uv in $\mathbb{Z}[x]$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{\frac{u}{d}\}$
- \mathbf{q} return L

Input: $f \in \mathbb{Z}[x]$ squarefree of degree n > 0, $d = \mathrm{lc}(f)$ **Output**: $\{f_1, \dots, f_r\} \subset \mathbb{Q}[x]$, monic irreducible, with $f = df_1 \cdots f_r$

- 1 Choose a prime $p \in \mathbb{N}$ not dividing d and such that f remains squarefree in $\mathbb{F}_p[x]$
- $k \leftarrow 1 + \lfloor \log_p(d\sqrt{n+1} \cdot 2^{n+1} ||f||_{\infty}) \rfloor$
- 3 Factor f modulo p, yielding monic $h_1,\ldots,h_s\in\mathbb{Z}[x]$ with $f\equiv dh_1\cdots h_s \bmod p$
- 4 call Hensel lifting to obtain monic $g_1, \ldots, g_s \in \mathbb{Z}[x]$ with $f \equiv dg_1 \cdots g_s \bmod p^k$
- $T \leftarrow \{1, \ldots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow d \prod_{j \in S} g_j \text{ rem } p^k, v \leftarrow d \prod_{j \notin S} g_j \text{ rem } p^k$ (using symmetric coefficients)
- if df = uv in $\mathbb{Z}[x]$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{\frac{u}{d}\}$
- f g return L

How many bad primes?

$$f = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x] \text{ nonconstant squarefree, } \deg f = n$$

$$p \in \mathbb{N} \text{ bad prime} \quad : \iff \quad p \mid \operatorname{lc}(f) \text{ or } f \text{ is not squarefree in } \mathbb{F}_p[x] \\ \iff \quad p \mid \operatorname{lc}(f) \text{ or } \gcd(f,f') \neq 1 \text{ in } \mathbb{F}_p[x] \\ \iff \quad p \mid \det \operatorname{Syl}(f,f'), \text{ where}$$

$$\operatorname{Syl}(f,f') = \begin{pmatrix} a_n & \dots & a_1 & a_0 \\ & \ddots & \ddots & \ddots & \ddots \\ & & a_n & \dots & a_1 & a_0 \\ & & \ddots & \ddots & \ddots & \ddots \\ & & & a_n & \dots & a_1 \\ & & & & na_n & \dots & a_1 \end{pmatrix} \in \mathbb{Z}^{(2n-1)\times(2n-1)}$$

$$\operatorname{ma}_n & \dots & \operatorname{ma}_n &$$

Hadamard's inequality

$$f = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$$
 nonconstant squarefree, $\deg f = n$
$$|\det \operatorname{Syl}(f,f')| \leq \underbrace{(n^2 + n)^n \|f\|_\infty^{2n-1}}_B$$

So there are at most $\log_2 B \in O(n\log(n\|f\|_{\infty}))$ many bad primes.

Outline

- 1 Introduction
- 2 Univariate GCDs
- 3 Univariate factorization over finite fields
- 4 Univariate factorization over the integers
- 5 Two or more variables
 - Bivariate GCDs
 - Bivariate factorization
 - Multivariate GCDs
 - Multivariate factorization

Bivariate GCDs

 $F \, \mathsf{field} \text{, } f,g \in F[x,y] \text{, } \deg_x \leq n \text{, } \deg_y \leq m$

Main idea: Evaluation/interpolation

- **1** Choose evaluation points $a_0, \ldots, a_{2m} \in F$ such that $lc_x(f), lc_x(g) \in F[y]$ do not vanish at $y = a_i$ for any i
- 2 for $i=0,\ldots,2m$ do $h_i\leftarrow\gcd(f(x,a_i),g(x,a_i))\in F[x]$
- 3 Compute interpolating polynomial $h \in \mathbb{F}[x,y]$ with $\deg_y f \leq 2m$ and $h(x,a_i)=h_i$ for all i
- 4 Using the EEA, perform rational reconstruction to compute $H \in \mathbb{F}(y)[x]$ with numerator and denominator degrees $\leq m$ and $H(x,a_i) = h(x,a_i)$ for all i
- 5 return H

Note: we arbitrarily chose x as the main variable and return a GCD that is monic in x

Does this work?

There may be bad evaluation points such that degree of h_i is too high.

Solution: Choose 4m instead of 2m evaluation points at random and discard any h_i whose degree is too high.

How many bad evaluation points are there?

$$a \in F \text{ bad } \iff \operatorname{lc}_x(fg)(a) = 0$$

$$\operatorname{or } \deg_x \gcd(f(x,a),g(x,a)) > \deg_x \gcd(f,g)$$

$$\iff \operatorname{lc}_x(fg)(a) = 0 \text{ or } \det S_d(f(x,a),g(x,a)) = 0$$

$$\iff \det S_d(f,g)(a) = 0,$$

where S_d is a certain square submatrix of $\mathrm{Syl}_x(f,g)$.

Since every row in $\mathrm{Syl}(f,g)$ has $\deg_y \leq m$, the degree of the determinant of a submatrix is at most 2nm, and this is the maximal number of bad evaluation points.

Bivariate factorization

$$F$$
 field, $f \in F[x, y]$, $\deg_x f = n$, $\deg_y f = m$

Evaluation/interpolation does not work well because we do not know which factors at $y=a_i$ correspond to which factors at $y=a_j$

Similar to the $\mathbb{Z}[x]$ case, we choose a single evaluation point a, say a=0, and use Hensel lifting and factor combination

Algorithm

Input: $f \in F[x,y]$ squarefree with $n=\deg_x f=n>0$, $d=\operatorname{lc}_x(f)$, $m=\deg_y f$ Output: $\{f_1,\ldots,f_r\}\subset F(y)[x]$, monic irreducible, with $f=df_1\cdots f_r$

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $2 k \leftarrow 2m + 1$
- Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- 4 call Hensel lifting to obtain monic $g_1,\ldots,g_s\in F[x]$ with $f^*\equiv d^*g_1\cdots g_s \bmod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow \prod_{j \in S} g_j \text{ rem } y^k, v \leftarrow \prod_{j \notin S} g_j \text{ rem } y^k$
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \mod y^k$ and $V \equiv v \mod y^k$ (Padé approximation)
- if $f^* = d^*uv$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{u(x, y + a)\}$
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- 3 Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- 4 call Hensel lifting to obtain monic $g_1, \ldots, g_s \in F[x]$ with $f^* \equiv d^* g_1 \cdots g_s \bmod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow \prod_{j \in S} g_j \text{ rem } y^k, v \leftarrow \prod_{j \notin S} g_j \text{ rem } y^k$
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation
- if $f^* = d^*uv$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{u(x, y + a)\}$
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- 3 Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- 4 call Hensel lifting to obtain monic $g_1, \ldots, g_s \in F[x]$ with $f^* \equiv d^*g_1 \cdots g_s \bmod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow \prod_{j \in S} g_j \text{ rem } y^k, v \leftarrow \prod_{j \notin S} g_j \text{ rem } y^k$
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- 3 Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- **4 call** Hensel lifting to obtain monic $g_1,\ldots,g_s\in F[x]$ with $f^*\equiv d^*g_1\cdots g_s \bmod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow \prod_{j \in S} g_j \text{ rem } y^k, v \leftarrow \prod_{j \notin S} g_j \text{ rem } y^k$
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- **3** Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- **4 call** Hensel lifting to obtain monic $g_1, \ldots, g_s \in F[x]$ with $f^* \equiv d^*g_1 \cdots g_s \mod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow \prod_{j \in S} g_j \text{ rem } y^k, v \leftarrow \prod_{j \notin S} g_j \text{ rem } y^k$
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation
- if $f^* = d^*uv$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{u(x, y + a)\}$
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- **3** Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- **4 call** Hensel lifting to obtain monic $g_1,\ldots,g_s\in F[x]$ with $f^*\equiv d^*g_1\cdots g_s \bmod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
 - $u \leftarrow \prod_{j \in S} g_j \text{ rem } y^k, v \leftarrow \prod_{j \notin S} g_j \text{ rem } y^k$
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation
- if $f^* = d^*uv$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{u(x, y + a)\}$
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- **3** Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- **4 call** Hensel lifting to obtain monic $g_1, \ldots, g_s \in F[x]$ with $f^* \equiv d^*g_1 \cdots g_s \mod y^k$
- $5 \quad T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \varnothing$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow \prod_{j \in S} g_j \text{ rem } y^k, v \leftarrow \prod_{j \notin S} g_j \text{ rem } y^k$
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation
- if $f^* = d^*uv$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{u(x, y + a)\}$
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- **3** Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- **4 call** Hensel lifting to obtain monic $g_1, \ldots, g_s \in F[x]$ with $f^* \equiv d^*g_1 \cdots g_s \mod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation)
- if $f^* = d^*uv$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{u(x, y + a)\}$
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- 3 Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- **4 call** Hensel lifting to obtain monic $g_1,\ldots,g_s\in F[x]$ with $f^*\equiv d^*g_1\cdots g_s \bmod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation)
- if $f^* = d^*uv$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{u(x, y + a)\}$
- 10 return L

- **1** Choose $a \in F$ such that $d(a) \neq 0$ and f(x, a) squarefree in F[x] $f^* \leftarrow f(x, y + a)$, $d^* \leftarrow d(y + a)$
- $k \leftarrow 2m+1$
- **3** Factor $f^*(x,0)$, yielding monic $h_1,\ldots,h_s\in F[x]$ with $f^*(x,0)=d^*(0)h_1\cdots h_s$, equivalently, $f^*\equiv d^*h_1\cdots h_s \bmod y$
- **4 call** Hensel lifting to obtain monic $g_1,\ldots,g_s\in F[x]$ with $f^*\equiv d^*g_1\cdots g_s \bmod y^k$
- $T \leftarrow \{1, \dots, s\}, \quad L \leftarrow \emptyset$
- **for** all subsets $S \subset T$ by increasing cardinality **do**
- $u \leftarrow \prod_{j \in S} g_j \text{ rem } y^k, v \leftarrow \prod_{j \notin S} g_j \text{ rem } y^k$
- Compute $U, V \in F(y)[x]$ with numerators and denominators of degrees at most m such that $U \equiv u \bmod y^k$ and $V \equiv v \bmod y^k$ (Padé approximation)
- if $f^* = d^*uv$ then $T \leftarrow T \setminus S$, $L \leftarrow L \cup \{u(x, y + a)\}$
- f 10 return L

Hilbert's irreducibility theorem

Main idea for more than two variables: reduce to bivariate case by substituting values for all but two variables

F field, $f \in F[x_1, x_2, \dots, x_k]$ irreducible, $a_3, \dots, a_k \in F$ random. Then $f(x_1, x_2, a_3, \dots, a_k) \in F[x_1, x_2]$ irreducible with high probability.

Consequently: no factor combination necessary for factorization.

Multivariate GCDs

F field, $f, g \in F[x_1, x_2, ..., x_k]$

- 1 Viewing f, g as polynomials in x_1 , recursively compute the $\gcd c$ of all coefficients of f and g, and let $f^* = \frac{f}{c}$ and $g^* = \frac{g}{c}$
- 2 Recursively compute $d \leftarrow \gcd(\operatorname{lc}_{x_1}(f^*), \operatorname{lc}_{x_1}(g^*)) \in F[x_2, \dots, x_n]$
- 3 Choose many evaluation vectors $a_i=(a_{i3},\ldots,a_{ik})\in F^{k-2}$ such that \deg_{x_1} does not drop when x_3,\ldots,x_k are evaluated at a_i , for any i
- 4 for all i do $h_i \leftarrow \gcd(f^*(x_1, x_2, a_{i3}, \dots), g^*(x_1, x_2, a_{i3}, \dots) \in \mathbb{F}(x_2)[x_1]$
- **5** Compute interpolating polynomial $h \in \mathbb{F}[x_1, \dots, x_n]$ with $h(x_1, x_2, a_3, \dots) = d(x_2, a_3, \dots) h_i$ for all i
- 6 Viewing h as a polynomial in x_1 , recursively compute the $\gcd e$ of all coefficients of h, and let $h^* = \frac{h}{e}$
- 7 return h^*

Bad evaluation points

F field, $f, g \in F[x_1, x_2, ..., x_k]$

As in the bivariate case, an evaluation point (a_{i3}, \ldots, a_{ik}) can be bad for two reasons:

- The degree in x_1 drops in step 3.
- The degree of the GCD is too high in step 4.

Solution: as in the bivariate case, double the number of a_i and choose them at random.

How many evaluation points?

- It is possible to give a sufficient but generally much to large upper bound based on the degrees of the input polynomials in all variables.
- Generally, multivariate problems tend to be sparse, and a bound depending on the nonzero terms of the input polynomials can be determined.
- In the sparse case, sparse interpolation should be used as well.
- A heuristic alternative is to also interpolate the cofactors u = f/h and v = g/h and adaptively add more points until f = uh and g = vh.

- **1** Compute the GCD $c \in F[x_2, \ldots, x_k]$ of all coefficients w.r.t. x_1 of f, and factor it recursively as $c = c_1 \cdots c_s$
- 2 Choose evaluation values $a=(a_3,\ldots,a_k)\in F^{k-1}$ such that \deg_{x_1} does not drop and f^* remains squarefree when x_3,\ldots,x_k are evaluated at a
- $f^* \leftarrow \frac{f(x_1, x_2, x_3 + a_3, \dots)}{c(x_2, x_3 + a_3, \dots)}, \quad d \leftarrow \text{lc}_{x_1}(f^*)$
- **call** the bivariate Zassenhaus algorithm to compute the monic irreducible factors $h_1, \ldots, h_r \in F(x_2)[x_1]$ of $f^*(x_1, x_2, 0, \ldots, 0)$
- for $1 \le j \le s$ do
- Compute the GCD c_j of all coefficients w.r.t. x_1 of $d(x_2,0,\ldots,0)h_j\in F[x_2][x_1]$, as well as $g_j=\frac{d(x_2,0,\ldots,0)h_j}{c_j}$
- Hensel lifting, variable by variable, yields $f^* = f_1 \dots f_n \mod < r_n^{d_3} \qquad r_n^{d_k} > \inf F[r_1]$
- **8 return** $c_1,\ldots,c_s,f_1(x_1,x_2,x_3-a_3,\ldots),\ldots,f_r(x_1,x_2,x_3-a_3,\ldots)$

- **1** Compute the GCD $c \in F[x_2, \ldots, x_k]$ of all coefficients w.r.t. x_1 of f, and factor it recursively as $c = c_1 \cdots c_s$
- 2 Choose evaluation values $a=(a_3,\ldots,a_k)\in F^{k-1}$ such that \deg_{x_1} does not drop and f^* remains squarefree when x_3,\ldots,x_k are evaluated at a
- $f^* \leftarrow \frac{f(x_1, x_2, x_3 + a_3, \dots)}{c(x_2, x_3 + a_3, \dots)}, \quad d \leftarrow \text{lc}_{x_1}(f^*)$
- **4** call the bivariate Zassenhaus algorithm to compute the monic irreducible factors $h_1, \ldots, h_r \in F(x_2)[x_1]$ of $f^*(x_1, x_2, 0, \ldots, 0)$
- for $1 \le j \le s$ do
- Compute the GCD c_j of all coefficients w.r.t. x_1 of $d(x_2,0,\ldots,0)h_j\in F[x_2][x_1]$, as well as $g_j=\frac{d(x_2,0,\ldots,0)h_j}{c_j}$
- Hensel lifting, variable by variable, yields $f^* \equiv f_1 \cdots f_r \mod < x_3^{d_3}, \dots, x_k^{d_k} > \text{in } F[x_1, \dots, x_k]$
- **8 return** $c_1, \ldots, c_s, f_1(x_1, x_2, x_3 a_3, \ldots), \ldots, f_r(x_1, x_2, x_3 a_3, \ldots)$

- **1** Compute the GCD $c \in F[x_2, \ldots, x_k]$ of all coefficients w.r.t. x_1 of f, and factor it recursively as $c = c_1 \cdots c_s$
- 2 Choose evaluation values $a=(a_3,\ldots,a_k)\in F^{k-1}$ such that \deg_{x_1} does not drop and f^* remains squarefree when x_3,\ldots,x_k are evaluated at a
- $f^* \leftarrow \frac{f(x_1, x_2, x_3 + a_3, \dots)}{c(x_2, x_3 + a_3, \dots)}, \quad d \leftarrow \mathrm{lc}_{x_1}(f^*)$
- **all** the bivariate Zassenhaus algorithm to compute the monic irreducible factors $h_1, \ldots, h_r \in F(x_2)[x_1]$ of $f^*(x_1, x_2, 0, \ldots, 0)$
- for $1 \le j \le s$ do
- Compute the GCD c_j of all coefficients w.r.t. x_1 of $d(x_2,0,\ldots,0)h_j\in F[x_2][x_1]$, as well as $g_j=\frac{d(x_2,0,\ldots,0)h_j}{c_j}$
- Hensel lifting, variable by variable, yields $f^* \equiv f_1 \cdots f_r \mod < x_3^{d_3}, \dots, x_k^{d_k} > \text{in } F[x_1, \dots, x_k]$
- **B** return $c_1, \ldots, c_s, f_1(x_1, x_2, x_3 a_3, \ldots), \ldots, f_r(x_1, x_2, x_3 a_3, \ldots)$

- **1** Compute the GCD $c \in F[x_2, \ldots, x_k]$ of all coefficients w.r.t. x_1 of f, and factor it recursively as $c = c_1 \cdots c_s$
- 2 Choose evaluation values $a=(a_3,\ldots,a_k)\in F^{k-1}$ such that \deg_{x_1} does not drop and f^* remains squarefree when x_3,\ldots,x_k are evaluated at a
- $f^* \leftarrow \frac{f(x_1, x_2, x_3 + a_3, \dots)}{c(x_2, x_3 + a_3, \dots)}, \quad d \leftarrow \mathrm{lc}_{x_1}(f^*)$
- **4 call** the bivariate Zassenhaus algorithm to compute the monic irreducible factors $h_1, \ldots, h_r \in F(x_2)[x_1]$ of $f^*(x_1, x_2, 0, \ldots, 0)$
- for $1 \le j \le s$ do
- Compute the GCD c_j of all coefficients w.r.t. x_1 of $d(x_2,0,\ldots,0)h_j\in F[x_2][x_1]$, as well as $g_j=\frac{d(x_2,0,\ldots,0)h_j}{c_j}$
- Hensel lifting, variable by variable, yields $f^* \equiv f_1 \cdots f_r \mod < x_3^{d_3}, \dots, x_k^{d_k} > \text{in } F[x_1, \dots, x_k]$
- 8 return $c_1,\ldots,c_s,f_1(x_1,x_2,x_3-a_3,\ldots),\ldots,f_r(x_1,x_2,x_3-a_3,\ldots)$

- **1** Compute the GCD $c \in F[x_2, \ldots, x_k]$ of all coefficients w.r.t. x_1 of f, and factor it recursively as $c = c_1 \cdots c_s$
- **2** Choose evaluation values $a=(a_3,\ldots,a_k)\in F^{k-1}$ such that \deg_{x_1} does not drop and f^* remains squarefree when x_3,\ldots,x_k are evaluated at a
- $f^* \leftarrow \frac{f(x_1, x_2, x_3 + a_3, \dots)}{c(x_2, x_3 + a_3, \dots)}, \quad d \leftarrow \mathrm{lc}_{x_1}(f^*)$
- **4 call** the bivariate Zassenhaus algorithm to compute the monic irreducible factors $h_1, \ldots, h_r \in F(x_2)[x_1]$ of $f^*(x_1, x_2, 0, \ldots, 0)$
- $for 1 \leq j \leq s do$
- Compute the GCD c_j of all coefficients w.r.t. x_1 of $d(x_2,0,\ldots,0)h_j\in F[x_2][x_1]$, as well as $g_j=\frac{d(x_2,0,\ldots,0)h_j}{c_j}$
- 7 Hensel lifting, variable by variable, yields $f^* \equiv f_1 \cdots f_r \mod < x_3^{d_3}, \dots, x_k^{d_k} > \text{in } F[x_1, \dots, x_k]$
- 8 return $c_1, \ldots, c_s, f_1(x_1, x_2, x_3 a_3, \ldots), \ldots, f_r(x_1, x_2, x_3 a_3, \ldots)$

- **1** Compute the GCD $c \in F[x_2, \ldots, x_k]$ of all coefficients w.r.t. x_1 of f, and factor it recursively as $c = c_1 \cdots c_s$
- **2** Choose evaluation values $a=(a_3,\ldots,a_k)\in F^{k-1}$ such that \deg_{x_1} does not drop and f^* remains squarefree when x_3,\ldots,x_k are evaluated at a
- $f^* \leftarrow \frac{f(x_1, x_2, x_3 + a_3, \dots)}{c(x_2, x_3 + a_3, \dots)}, \quad d \leftarrow \mathrm{lc}_{x_1}(f^*)$
- **4 call** the bivariate Zassenhaus algorithm to compute the monic irreducible factors $h_1, \ldots, h_r \in F(x_2)[x_1]$ of $f^*(x_1, x_2, 0, \ldots, 0)$
- $for 1 \leq j \leq s do$
- Compute the GCD c_j of all coefficients w.r.t. x_1 of $d(x_2,0,\dots,0)h_j\in F[x_2][x_1]$, as well as $g_j=\frac{d(x_2,0,\dots,0)h_j}{c_j}$
- Thensel lifting, variable by variable, yields $f^* \equiv f_1 \cdots f_r \mod < x_3^{d_3}, \dots, x_k^{d_k} > \text{in } F[x_1, \dots, x_k]$
- **8** return $c_1, \ldots, c_s, f_1(x_1, x_2, x_3 a_3, \ldots), \ldots, f_r(x_1, x_2, x_3 a_3, \ldots)$

- **1** Compute the GCD $c \in F[x_2, \ldots, x_k]$ of all coefficients w.r.t. x_1 of f, and factor it recursively as $c = c_1 \cdots c_s$
- **2** Choose evaluation values $a=(a_3,\ldots,a_k)\in F^{k-1}$ such that \deg_{x_1} does not drop and f^* remains squarefree when x_3,\ldots,x_k are evaluated at a
- $f^* \leftarrow \frac{f(x_1, x_2, x_3 + a_3, \dots)}{c(x_2, x_3 + a_3, \dots)}, \quad d \leftarrow \mathrm{lc}_{x_1}(f^*)$
- **4 call** the bivariate Zassenhaus algorithm to compute the monic irreducible factors $h_1, \ldots, h_r \in F(x_2)[x_1]$ of $f^*(x_1, x_2, 0, \ldots, 0)$
- $for 1 \leq j \leq s do$
- Compute the GCD c_j of all coefficients w.r.t. x_1 of $d(x_2,0,\dots,0)h_j\in F[x_2][x_1]$, as well as $g_j=\frac{d(x_2,0,\dots,0)h_j}{c_j}$
- 7 Hensel lifting, variable by variable, yields $f^* \equiv f_1 \cdots f_r \mod < x_3^{d_3}, \dots, x_k^{d_k} > \inf F[x_1, \dots, x_k]$
- **8 return** $c_1, \ldots, c_s, f_1(x_1, x_2, x_3 a_3, \ldots), \ldots, f_r(x_1, x_2, x_3 a_3, \ldots)$

- **1** Compute the GCD $c \in F[x_2, \ldots, x_k]$ of all coefficients w.r.t. x_1 of f, and factor it recursively as $c = c_1 \cdots c_s$
- **2** Choose evaluation values $a=(a_3,\ldots,a_k)\in F^{k-1}$ such that \deg_{x_1} does not drop and f^* remains squarefree when x_3,\ldots,x_k are evaluated at a
- $f^* \leftarrow \frac{f(x_1, x_2, x_3 + a_3, \dots)}{c(x_2, x_3 + a_3, \dots)}, \quad d \leftarrow \mathrm{lc}_{x_1}(f^*)$
- **4 call** the bivariate Zassenhaus algorithm to compute the monic irreducible factors $h_1, \ldots, h_r \in F(x_2)[x_1]$ of $f^*(x_1, x_2, 0, \ldots, 0)$
- $for 1 \leq j \leq s do$
- Compute the GCD c_j of all coefficients w.r.t. x_1 of $d(x_2,0,\dots,0)h_j\in F[x_2][x_1]$, as well as $g_j=\frac{d(x_2,0,\dots,0)h_j}{c_j}$
- 7 Hensel lifting, variable by variable, yields $f^* \equiv f_1 \cdots f_r \mod < x_3^{d_3}, \dots, x_k^{d_k} > \text{in } F[x_1, \dots, x_k]$
- **8** return $c_1, \ldots, c_s, f_1(x_1, x_2, x_3 a_3, \ldots), \ldots, f_r(x_1, x_2, x_3 a_3, \ldots)$

Remarks

- This is a heuristic algorithm based on the assumption that the bivariate factors correspond uniquely to the multivariate ones. Solution: Verify the final result by multiplying all factors
- The shift $x_3 \mapsto x_3 + a_3, \ldots$ in step 3 can be avoided; it is done here to simplify the presentation.
- There are also multivariate GCD algorithms based on Hensel lifting instead of interpolation.

Remarks

- This is a heuristic algorithm based on the assumption that the bivariate factors correspond uniquely to the multivariate ones. Solution: Verify the final result by multiplying all factors
- The shift $x_3 \mapsto x_3 + a_3, \ldots$ in step 3 can be avoided; it is done here to simplify the presentation.
- There are also multivariate GCD algorithms based on Hensel lifting instead of interpolation.

Remarks

- This is a heuristic algorithm based on the assumption that the bivariate factors correspond uniquely to the multivariate ones.
 Solution: Verify the final result by multiplying all factors
- The shift $x_3 \mapsto x_3 + a_3, \ldots$ in step 3 can be avoided; it is done here to simplify the presentation.
- There are also multivariate GCD algorithms based on Hensel lifting instead of interpolation.