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In the first talk, I shall consider multiple zeta values (MZVs) and
alternating Euler sums, exposing some of the wonderful mathemat-
ical structure of these objects and indicating where they arise in
quantum field theory (QFT). In the second, I shall consider modu-
lar forms whose L-functions give remarkable evaluations of massive
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1 Multiple zeta values

1.1 Zeta values

For integer s > 1, the zeta values

ζ(s) =
∞∑
n=1

1

ns

divide themselves into two radically different classes. At even integers we have

ζ(2) =
π2

6

ζ(4) =
π4

90

ζ(6) =
π6

945

ζ(8) =
π8

9450

ζ(10) =
π10

93555

and hence integer relations such as

5ζ(4)− 2ζ2(2) = 0. (1)

Yet no such relations have been found for odd arguments.

2



To prove (1), consider the wonderful formula

cos(z)

sin(z)
=

∞∑
n=−∞

1

z − nπ

in which the cotangent function is given by the sum of its pole terms, each with unit
residue. Multiplying by z, to remove the singularity at z = 0, and then combining the
terms with positive and negative n, we obtain

z cos(z)

sin(z)
= 1− 2z2

∞∑
n=1

1

n2π2 − z2
.

Expanding about z = 0 we obtain

1− z2/2! + z4/4! +O(z6)

1− z2/3! + z4/5! +O(z6)
= 1− 2 ζ(2)

z2

π2
− 2 ζ(4)

z4

π4
+O(z6)

and easily prove that ζ(2) = π2/6 and ζ(4) = π4/90.

1.2 Double sums

For integers a > 1 and b > 0, let

ζ(a, b) =
∑

m>n>0

1

manb

which is a multiple zeta value (MZV) with weight a+ b and depth 2. Then, when a and
b are both greater than 1, the double sum in the product

ζ(a)ζ(b) =
∑
m>0

1

ma

∑
n>0

1

nb
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can be split into 3 terms, with m > n > 0, m = n > 0 and n > m > 0. Hence

ζ(a)ζ(b) = ζ(a, b) + ζ(a+ b) + ζ(b, a). (2)

There are further algebraic relations. Consider the sums

T (a, b, c) =
∞∑
j=1

∞∑
k=1

1

(j + k)ajbkc
.

Multiplying the numerator by (j + k)− j − k = 0 we obtain

0 = T (a− 1, b, c)− T (a, b− 1, c)− T (a, b, c− 1)

and hence by repeated application of

T (a, b, c) = T (a+ 1, b− 1, c) + T (a+ 1, b, c− 1)

we may reduce these Tornheim double sums to MZVs. For example

T (1, 1, 1) = 2ζ(2, 1).

We also have

T (1, 1, 1) =
∞∑
j=1

∞∑
k=1

1

(j + k)jk
=

∞∑
j=1

1

j2

∞∑
k=1

(
1

k
− 1

j + k

)
.

But now the inner sum has only j terms and hence

T (1, 1, 1) =
∞∑
j=1

1

j2

j∑
n=1

1

n
= ζ(2, 1) + ζ(3).
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Comparing the two results for T (1, 1, 1), we find that

ζ(2, 1) = ζ(3).

More generally, for a > 1, Euler found that

ζ(a, 1) =
a

2
ζ(a+ 1)− 1

2

a−1∑
b=2

ζ(a+ 1− b)ζ(b). (3)

Moreover, Euler found the evaluation of all MZVs with odd weight and depth 2. For odd
a > 1 and even b > 0 we have

ζ(a, b) = −1 + C(a, b, a+ b)

2
ζ(a+ b)

+
(a+b−3)/2∑

k=1

C(a, b, 2k + 1)ζ(a+ b− 2k − 1)ζ(2k + 1) (4)

where

C(a, b, c) =

(
c− 1

a− 1

)
+

(
c− 1

b− 1

)
.

For example, we obtain

ζ(3, 2) = −11

2
ζ(5) +

π2

2
ζ(3)

ζ(2, 3) = ζ(2)ζ(3)− ζ(5)− ζ(3, 2)

=
9

2
ζ(5)− π2

3
ζ(3)
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using (4) and (2).

With weight w = a + b < 8 there is only one double sum ζ(a, b) not covered by Euler’s
explicit formulas, namely

ζ(4, 2) = ζ2(3)− 4

3
ζ(6)

with an evaluation whose proof will be considered later.

To obtain such evaluations by empirical methods, you may use the EZFace interface
http://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi

which supports the lindep function of Pari-GP. For example, the input
lindep([z(4,2),z(3)ˆ2,z(6)])
produces the output
3., -3., 4.

corresponding to the integer relation

3ζ(4, 2)− 3ζ2(3) + 4ζ(6) = 0.

At weight w = 8, it appears that ζ(5, 3) cannot be reduced to zeta values and their
products, though we have no way of proving that such a reduction cannot exist. [We
cannot even prove that ζ(3)/π3 is irrational.] I shall take ζ(5, 3) as an (empirically)
irreducible MZV of weight 8 and depth 2. Then all other double sums of weight 8 may
be reduced to ζ(5, 3) and zeta values. For example,

20ζ(6, 2) = 40ζ(5)ζ(3)− 8ζ(5, 3)− 49ζ(8).

It is proven that the number of irreducible double sums of even weight w = 2n is no
greater than ⌈n/3⌉ − 1. Up to weight w = 12, we may take the irreducible double sums
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to be ζ(5, 3), ζ(7, 3) and ζ(9, 3). Later we shall see that the proven reduction

ζ(7, 5) =
14

9
ζ(9, 3) +

28

3
ζ(7)ζ(5)− 24257π12

2298646350
(5)

sets us a puzzle. There is only one irreducible MZV with weight 12 and depth 2.

1.3 Triple sums

The first MZV of depth 3 that has not been reduced to MZVs of lesser depth (and their
products) occurs at weight 11. It is proven that

ζ(a, b, c) =
∑

l>m>n>0

1

lambnc

is reducible when the weight w = a+ b+ c is even or less than 11. I conjectured that all
MZVs of depth 3 are expressible in terms of Q-linear combinations of the set

B3 = {ζ(2a+ 1, 2b+ 1, 2c+ 1)|a ≥ b ≥ c, a > c}

together with double sums, ζ(a, b), single sums, ζ(c), and their products. This was borne
out by the investigations by Borwein and Girgensohn in
http://www.combinatorics.org/Volume 3/PDF/v3i1r23.pdf

and more recently by Blümlein, Broadhurst and Vermaseren in
http://arxiv.org/PS cache/arxiv/pdf/0907/0907.2557v2.pdf

with the associated MZV DataMine

http://www.nikhef.nl/˜form/datamine/
providing strong evidence for many of the claims made in this talk.
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My conjecture implies that the number of irreducible MZVs of weight w = 2n + 3 and
depth 3 is ⌈n2/12⌉ − 1, with the sequence

1, 2, 2, 4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26, 30

giving the numbers for odd weights from 11 to 41.

1.4 A quadruple sum

The mystery of MZVs really begins here. At weight 12 there first appears a quadruple
sum that has not been reduced to MZVs with depths less than 4. In the DataMine we
take this to be

ζ(6, 4, 1, 1) =
∑

k>l>m>n>0

1

k6l4mn

and prove, by exhaustion, that the following methods are insufficient to reduce it.

1.5 Shuffles, stuffles and duality

For integers sj > 0 and s1 > 1, the MZV

ζ(s1, s2, . . . , sk) =
∑

n1>n2>...>nk>0

1

ns1
1 ns2

2 . . . nsk
k

may be encoded by a word of length w =
∑k

j=1 sj in the two letter alphabet (A,B), as
follows. We write A, s1 − 1 times, then B, then A, s2 − 1 times, then B, and so on, until
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we end with B. For example

ζ(5, 3) = Z(AAAABAAB)

ζ(6, 4, 1, 1) = Z(AAAAABAAABBB)

where the function Z takes a word as it argument and evaluates to the corresponding
MZV. Note that the word must begin with A and end with B. The weight of the MZV
is the length of the word and the depth is the number of B’s in the word.

We may evaluate the MZV from an iterated integral defined by its word. For example

ζ(2, 1) = Z(ABB) =
∫ 1

0

dx1

x1

∫ x1

0

dx2

1− x2

∫ x2

0

dx3

1− x3

(6)

where we use the differential form dx/x whenever we see the letter A and the differential
form dx/(1 − x) whenever we see the letter B. Then the equality of the nested sum
ζ(2, 1) with the iterated integral Z(ABB) follows from binomial expansion of 1/(1− x2)
and 1/(1− x3) in (6).

The shuffle algebra of MZVs is the identity

Z(U)Z(V ) =
∑

W∈S(U,V )

Z(W ) (7)

where S(U, V ) is the set of words obtained by all permutations of the letters of UV that
preserve the order of letters in U and the order of letters in V . For example, suppose that
U = ab and V = xy. Then S(U, V ) consists of the words

S(ab, xy) = {abxy, axby, xaby, axyb, xayb, xyab} .
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The only legal two-letter word is AB. Hence setting a = x = A and b = y = B we obtain

Z(AB)Z(AB) = 2Z(ABAB) + 4Z(AABB)

which shows that
ζ2(2) = 2ζ(2, 2) + 4ζ(3, 1).

We also have the “stuffle” identity

ζ(2)ζ(2) = ζ(2, 2) + ζ(4) + ζ(2, 2)

from shuffling the arguments in a product of zetas and adding in the extra “stuff” that
originates when summation variables are equal. Hence we conclude that ζ(3, 1) = 1

4
ζ(4).

The evaluation ζ(2, 2) = 3
4
ζ(4) requires the extra piece of information ζ2(2) = 5

2
ζ(4)

obtained from expanding the cotangent function.

Like the shuffle algebra, the stuffle algebra can be used to express any product of MZVs
as a sum of MZVs. For example

ζ(3, 1)ζ(2) = ζ(3, 1, 2) + ζ(3, 3) + ζ(3, 2, 1) + ζ(5, 1) + ζ(2, 3, 1).

By combining shuffles, stuffles and reductions of ζ(2), ζ(4) and ζ(6) to powers of π2 we
may prove that

Z(AAABAB) = ζ(4, 2) = ζ2(3)− 4

3
ζ(6).

Moreover, we obtain the same value for the depth-4 MZV

Z(ABABBB) = ζ(2, 2, 1, 1)
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since Z(W ) = Z(W̃ ), where the dual W̃ of a word W is obtained by writing it backwards
and then exchanging A and B. This duality was observed by Zagier. It follows from the
transformation x → 1− x in the iterated integral, which exchanges the differential forms
dx/x and dx/(1− x) and reverses the ordering of the integrations. Hence

ζ(2, 3, 1) = Z(ABAABB) = Z(AABBAB) = ζ(3, 1, 2).

Thus we arrive at a well-defined question: for a given weight w > 2 and a given depth
d > 0, what is rank-deficiencyDw,d of all the algebraic relations that follow from the shuffle
and stuffle algebras algebras of MZVs, combined with duality and the reduction of even
zeta values to powers of π2? Note that Dw,d is an upper limit for the number of irreducible
MZVs at this weight and depth. There may conceivably (but rather improbably) be fewer,
since we cannot rule out the possibility of additional integer relations. [We cannot even
prove that ζ(3)/π3 is irrational.]

In 1996, Dirk Kreimer and I conjectured that the answer to this question is given by the
generating function

∏
w>2

∏
d>0

(1− xwyd)Dw,d ?
= 1− x3y

1− x2
+

x12y2(1− y2)

(1− x4)(1− x6)
(8)

which produces the following table of values, with underlined values verified by Jos Ver-
maseren.

To explain how I guessed the final term in the generating function (8), I shall need to
discuss alternating Euler sums.
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1.6 MZVs in QFT

The counterterms in the renormalization of the coupling in ϕ4 theory, at L loops, may
involve MZVs with weights up to 2L − 3. Those associated with subdivergence-free
diagrams may be obtained from finite massless 2-point diagrams with one less loop.

The first irreducible MZV of depth 2, namely ζ(5, 3), occurs in a counterterm coming from
the most symmetric 6-loop diagram for the ϕ4 coupling, in which each of the 4 vertices
connected to an external line is connected to each of the 3 other vertices, giving 12
internal propagators (or edges, as mathematicians prefer to call them). It hence diverges,
at large loop momenta, in the manner of

∫
d24k/k24. Its contribution to the β-function

of ϕ4-theory is scheme-independent and may be computed to high accuracy by using
Gegenbauer polynomial expansions in x-space, which give the counterterm as a 4-fold
sum that is far from obviously a MZV. Accelerated convergence of truncations of this
sum gave an empirical Q-linear of combination of ζ(5)ζ(3) with

ζ(5, 3)− 29

12
ζ(8)

and the latter combination was found to occur in another 6-loop counterterm. I shall
attempt to demystify the multiple of ζ(8) after discussing alternating Euler sums.

At 7 loops, Dirk Kreimer and I found the combination

ζ(3, 5, 3)− ζ(3)ζ(5, 3)

in 3 different counterterms, where it occurs in combination with rational multiples of
ζ(11) and ζ2(3)ζ(5).
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w /d 1 2 3 4 5 6 7 8 9 10
3 1
4
5 1
6
7 1
8 1
9 1
10 1
11 1 1
12 1 1
13 1 2
14 2 1
15 1 2 1
16 2 3
17 1 4 2
18 2 5 1
19 1 5 5
20 3 7 3
21 1 6 9 1
22 3 11 7
23 1 8 15 4
24 3 16 14 1
25 1 10 23 11
26 4 20 27 5
27 1 11 36 23 2
28 4 27 45 16
29 1 14 50 48 7
30 4 35 73 37 2

Table 1: Number of basis elements for MZVs as a function of weight and depth in a min-
imal depth representation. Underlined are the values we have verified with our programs.
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2 Alternating Euler sums

My second topic is closely related to the first, namely alternating sums of the form
∞∑

n1>n2>...>nk>0

εn1
1 . . . εnk

k

ns1
1 . . . nsk

k

with positive integers sj and signs εj = ±1. We may compactly indicate the presence
of an alternating sign, when εj = −1, by placing a bar over the corresponding integer
exponent sj. Thus we write

ζ(3, 1) =
∑

m>n>0

(−1)m+n

m3n

ζ(3, 6, 3, 6, 3) =
∑

j>k>l>m>n>0

(−1)k+m

j3k6l3m6n3

using the same symbol ζ as we did for the MZVs. Such sums may be studied using EZFace
and the DataMine.

2.1 Three-letter alphabet

Alternating sums have a stuffle algebra, from their representation as nested sums, and a
shuffle algebra, from their representation as iterated integrals. In the integral represen-
tation we need a third letter, C, in our alphabet, corresponding to the differential form
dx/(1 + x). Consider

Z(ABC) =
∫ 1

0

dx

x

∫ x

0

dy

1− y

∫ y

0

dz

1 + z
.
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The z-integral gives log(1 + y) = −∑j>0(−y)j/j and hence

Z(ABC) = −
∑
j>0

∫ 1

0

dx

x

∫ x

0

dy

1− y

(−y)j

j
.

Expanding 1/(1− y) =
∑

k>0 y
k−1 and integrating over y we obtain

Z(ABC) = −
∑
k>0

∑
j>0

∫ 1

0

dx

x

xj+k

j + k

(−1)j

j

and the final integration gives

Z(ABC) = −
∑
k>0

∑
j>0

1

(j + k)2
(−1)j

j
.

Finally, the substitution k = m− j gives

Z(ABC) = −
∑

m>j>0

(−1)j

m2j
= −ζ(2, 1).

It takes a bit of practice to translate between words and sums. Here’s another example:

Z(ACCAC) = (−1)3
∑
l>0

∑
k>0

∑
j>0

(−1)l

(j + k + l)2
(−1)k

j + k

(−1)j

j2

gives

Z(ACCAC) = −
∑

m>n>j>0

(−1)m

m2nj2
= −ζ(2, 1, 2)
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after the substitutions l = m− n and k = n− j.

Going from sums to words is quite tricky. For example, try to find the word W and the
sign ε(W ) such that

ζ(3, 6, 3, 6, 3) = ε(W )Z(W ).

Note that ε(W ) is +1 or −1 according as whether there is an odd or even number of
letters C in the word W . The word W begins AABAAAAACAA . . .. The next letter is
either B or C, but which is it?

2.2 Shuffles and stuffles

The 6 shuffles in

S(ab, xy) = {abxy, axby, xaby, axyb, xayb, xyab}

give 6 different words, with a = A, b = B, x = y = C:

Z(AB)Z(CC) = Z(ABCC) + Z(ACBC) + Z(CABC)

+ Z(ACCB) + Z(CACB) + Z(CCAB)

which translates to

ζ(2)ζ(1, 1) = ζ(2, 1, 1) + ζ(2, 1, 1) + ζ(1, 2, 1) + ζ(2, 1, 1) + ζ(1, 2, 1) + ζ(1, 1, 2).

The stuffles for this product are

ζ(2)ζ(1, 1) = ζ(2, 1, 1) + ζ(3, 1) + ζ(1, 2, 1) + ζ(1, 3) + ζ(1, 1, 2).
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2.3 Transforming words

The transformation x = (1− y)/(1 + y) gives

d log(x) = d log(1− y)− d log(1 + y)

d log(1− x) = d log(y)− d log(1 + y)

d log(1 + x) = − d log(1 + y)

and maps x = 0 and x = 1 to y = 1 and y = 0. Thus, if we take a word W , write it
backwards, and make the transformations

A → (B + C)

B → (A− C)

we may obtain an expression for Z(W ) by expanding the brackets.

For example the transformation

AB → (A− C)(B + C) = AB + AC − CB − CC

gives
Z(AB) = Z(AB) + Z(AC)− Z(CB)− Z(CC).

Combining this with the shuffle

Z(C)Z(C) = Z(CC) + Z(CC)

we obtain

0 = Z(AC)− Z(CB)− 1

2
Z(C)Z(C) = −ζ(2) + ζ(1, 1)− 1

2
ζ(1)ζ(1).
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Combining this with the stuffle

ζ(1)ζ(1) = ζ(1, 1) + ζ(2) + ζ(1, 1)

we obtain

ζ(2) = −1

2
ζ(2)

which is also obtainable as follows.

2.4 Doubling relations

For a > 1 we have

ζ(a) + ζ(a) =
∑
n>0

1 + (−1)n

na
=
∑
k>0

2

(2k)a
= 21−aζ(a)

by the substitution n = 2k. Hence

ζ(a) = (21−a − 1)ζ(a).

At a = 2, we obtain ζ(2) = −ζ(2)/2, as above. Note also that ζ(1) = − log(2).

We may take any MZV and convert it into a combination of MZVs and alternating sums,
by doubling the summation variables. For example, we obtain

22−a−bζ(a, b) =
∑

m>n>0

2

(2m)a
2

(2n)b

=
∑

j>k>0

1 + (−1)j

ja
1 + (−1)k

ka

= ζ(a, b) + ζ(a, b) + ζ(a, b) + ζ(a, b)

18



by the transformations j = 2m and k = 2n.

More complicated doubling relations were used in constructing the DataMine. With these,
it was possible to avoid using the time-consuming transformations A → (B + C) and
B → (A − C) as algebraic input. It was verified that the output, obtained by shuffling,
stuffling and doubling, satisfied the relations that follow from word transformation.

2.5 Conjectured enumeration of irreducibles

Before considering the enumeration of irreducible MZVs, in the (A,B) alphabet, I already
had a rather simple conjecture for the generator of the number, Ew,d, of irreducible sums
of weight w and depth d in the (A,B,C) alphabet, namely

∏
w>2

∏
d>0

(1− xwyd)Ew,d ?
= 1− x3y

(1− xy)(1− x2)
. (9)

If this be true, it is easy to obtain Ew,d by Möbius transformation of the binomial coeffi-
cients in Pascal’s triangle. Let

T (a, b) =
1

a+ b

∑
c|a,b

µ(c)
(a/c+ b/c)!

(a/c)!(b/c)!
(10)

where the sum is over all positive integers c that divide both a and b and the Möbius
function is defined by

µ(c) =


1 when c = 1
0 when c is divisible by the square of a prime
(−1)k when c is the product of k distinct primes.

(11)
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When w and d have the same parity, and w > d, one obtains from (9)

Ew,d = T

(
w − d

2
, d

)
. (12)

The DataMine now provides extensive evidence to support this conjecture. It was verified
at depth 6 up to weight 12, solving the algebraic input in rational arithmetic, and then
up to weight 18, using arithmetic modulo a 31-bit prime. At depth 5, the corresponding
weights are 17 and 21. At depth 4, they are 22 and 30.

2.6 Pushdown

Now consider the integers Mw,d generated by an even simpler process:

∏
w>2

∏
d>0

(1− xwyd)Mw,d = 1− x3y

1− x2
. (13)

But what is the question, to which this is the answer?

I conjectured that Mw,d is the number of irreducible sums of weight w and depth d in the
(A,B,C) alphabet that suffice for the evaluation of MZVs in the (A,B) alphabet.

As already hinted, the first place that this conjecture becomes non-trivial is at weight
12, where the enumerations M12,4 = 0 and M12,2 = 2 are to be contrasted with the
enumerations D12,4 = 1 and D12,2 = 1 of irreducible MZVs. The conjecture requires that

ζ(6, 4, 1, 1) =
∑

k>l>m>n>0

1

k6l4mn
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be reducible to sums of lesser depth, if we include an alternating double sum in the basis.

In 1996, I found such a “pushdown” empirically, using the integer-relation search routine
PSLQ. It took another decade to prove such an integer relation, by the laborious process
of solving all the known algebraic relations in the (A,B,C) alphabet at weight 12 and
depths up to 4. Jos Vermaseren derived this proven identity from the DataMine:

ζ(6, 4, 1, 1) = −64

27
A(7, 5)− 7967

1944
ζ(9, 3) +

1

12
ζ4(3) +

11431

1296
ζ(7)ζ(5)

−799

72
ζ(9)ζ(3) + 3ζ(2)ζ(7, 3) +

7

2
ζ(2)ζ2(5) + 10ζ(2)ζ(7)ζ(3)

+
3

5
ζ2(2)ζ(5, 3)− 1

5
ζ2(2)ζ(5)ζ(3)− 18

35
ζ3(2)ζ2(3)− 5607853

6081075
ζ6(2)

where
A(7, 5) = Z(AAAAAA(B − C)AAAAB) = ζ(7, 5) + ζ(7, 5).

It is now proven that all MZVs of weight up to 12 are reducible to Q-linear combinations
of ζ(5, 3), ζ(7, 3), ζ(3, 5, 3), ζ(9, 3), ζ(7, 5), single zeta values, and products of these terms.

I can now explain the rather simple-minded procedure that Dirk Kreimer and I used in
1996 to arrive at the conjecture

∏
w>2

∏
d>0

(1− xwyd)Dw,d ?
= 1− x3y

1− x2
+

x12y2(1− y2)

(1− x4)(1− x6)

for the number Dw,d of irreducible sums in the (A,B) alphabet of pure MZVs. We
added the third term to the much simpler conjectured generator for the much complicated
question answered by Mw,d, namely the number of irreducibles in the (A,B,C) alphabet
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that suffice for reductions of MZVs. The numerator, x12y2(1 − y2), of this term was
determined by the single pushdown observed at weight 12, from an MZV of depth 4 to
an alternating sum of depth 2. The denominator, (1 − xx)(1 − x6), was chosen to agree
with the empirical number D2n,2 = ⌈n/3⌉ − 1 of double non-alternating irreducible sums
of weight 2n. Then we assumed that the enumeration of all other pushdowns would be
generated by filtration. It was possible to check this, in a few cases, using PSLQ in 1996.

The list of explicit pushdowns that have now been obtained, in accord with the conjecture,
has grown since then.

At weights 15, 16, 17, we have found pushdowns from MZVs to these alternating sums:
ζ(6, 3, 6), ζ(13, 3), ζ(6, 5, 6).
At weight 18, there were pushdowns to ζ(15, 3) and ζ(6, 5, 4, 3).
At weight 19, to ζ(8, 3, 8) and ζ(6, 7, 6).
At weight 20, to ζ(17, 3), ζ(8, 5, 4, 3) and ζ(6, 5, 6, 3).

Our most ambitious efforts were at weight 21, where 3 MZVs of depth 5 are pushed down
to the alternating sums ζ(8, 5, 8), ζ(6, 9, 6)and ζ(8, 3, 10). Moreover the first pushdown
from an MZV of depth 7 to an alternating sum of depth 5 is predicted at weight 21. A
demanding PSLQ computation gave a relation of the form

ζ(6, 2, 3, 3, 5, 1, 1) = −326

81
ζ(3, 6, 3, 6, 3) + . . . (14)

where the remaining 150 terms are formed by MZVs with depth no greater than 5, and
their products. At such weight and depth, it becomes rather non-trivial to decide on
a single alternating sum that might replace a MZV of greater depth. It took several
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attempts to discover that the alternating sum

ζ(3, 6, 3, 6, 3) =
∑

j>k>l>m>n>0

(−1)k+m

(jk2lm2n)3

is an “honorary MZV” that performs this task.

2.7 Suppression of π in massless diagrams

Now I can demystify, somewhat, the combination

ζ(5, 3)− 29

12
ζ(8)

that occurs in scheme-independent counterterms of ϕ4 theory at 6 loops. Dirk Kreimer
and I discovered that the combinations

N(a, b) = ζ(a, b)− ζ(b, a),

with distinct odd integers a and b, simplify the results for counterterms. In particular,
the use of

N(3, 5) =
27

80

(
ζ(5, 3)− 29

12
ζ(8)

)
+

45

64
ζ(3)ζ(5)

removes all powers of π from both subdivergence-free diagrams that contribute to the
6-loop β-function. In each case, the contribution is a Z-linear combination of N(3, 5) and
ζ(3)ζ(5).

At higher loop numbers, Oliver Schnetz has found that N(3, 7) suppresses the appearance
π10. However, at 8 loops he found that N(3, 9) and N(5, 7) are not sufficient to remove
π12. Like the maths, the physics becomes different at weight 12.
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2.8 Magnetic moment of the electron

The magnetic moment of an electron, with charge −e and mass m, is slightly greater than
the Bohr magneton

eh̄

2m
= 9.274× 10−24 J T−1

which was the value predicted by Dirac. Here I included h̄ = h/(2π), which we usually
set to unity in QFT.

Using perturbation theory, we may expand in powers of the fine structure constant:

α =
e2

4πε0h̄c
=

1

137.035999 . . .
.

In QFT, we usually set ε0 = 1 and c = 1 and expand in powers of α/π = e2/(4π2),
obtaining a perturbation expansion

magnetic moment

Bohr magneton
= 1 + A1

α

π
+ A2

(
α

π

)2

+ A3

(
α

π

)3

+ . . .

which is known up to 3 loops.

In 1947, Schwinger found the first correction term A1 = 1
2
. In 1950, Karplus and Kroll

claimed the value

28ζ(3)− 54ζ(2) log(2) +
125

6
ζ(2)− 2687

288
= −2.972604271 . . .

for the coefficient of the next correction. It turned out that they had made a mistake in
this rather difficult calculation. The correct result

A2 =
3

4
ζ(3)− 3ζ(2) log(2) +

1

2
ζ(2) +

197

144
= −0.3284789655 . . .
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was not obtained until 1957. Not until 1996 was the next coefficient

A3 = −215

24
ζ(5) +

83

12
ζ(3)ζ(2)− 13

8
ζ(4)− 50

3
ζ(3, 1)

+
139

18
ζ(3)− 596

3
ζ(2) log(2) +

17101

135
ζ(2) +

28259

5184
(15)

= 1.181241456 . . .

found, by Stefano Laporta and Ettore Remiddi. The irrational numbers appearing on the
second line are those already seen in A2. On the first line we see zeta values and a new
number, namely the alternating double sum

ζ(3, 1) =
∑

m>n>0

(−1)m+n

m3n
≈ −0.1178759996505093268410139508341376187152 . . .

I visited Stefano and Ettore in Bologna when they were working on this formidable cal-
culation and recommended to them a method of integration by parts, in D dimensions,
that I had found useful for related calculations in the quantum field theory of electrons
and photons. Here D = 4− 2ε is eventually set to 4, the number of dimensions of space-
time. But it turns out to be easier if we keep it as a variable until the final stage of the
calculation. Then if we find parts of the result that are singular at ε = 0 we need not
worry: all that matters is that the complete result is finite. Based on my D-dimensional
experience, I expected their final result to look simplest when written in terms of ζ(3, 1).

The D-dimensional calculation that informed this intuition involved three-loop massive
diagrams contributing to charge renormalization in QED. These yielded Saalschützian F32
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hypergeometric series, with parameters differing from 1
2
by multiples of ε, namely

W (a1, a2; a3, a4) =
∞∑
n=0

(1
2
− a1ε)n(

1
2
− a2ε)n

(1
2
+ a3ε)n+1(

1
2
+ a4ε)n+1

with (α)n ≡ Γ(α + n)/Γ(α). In particular, I needed the expansions of W (1, 1; 1, 0) and
W (1, 0; 1, 1) in ε. The result for the most difficult three-loop diagram had the value
π2 log(2) − 3

2
ζ(3) at ε = 0. Noting that this also occurs in the two-loop contribution

to the magnetic moment, I expanded the charge-renormalization result to O(ε), where I
found only ζ(3, 1) and ζ(4). I thus hazarded the guess that these two sums would exhaust
the weight-4 contributions to the magnetic moment at 3 loops, which happily is the case.

One may also write (15) in terms of a polylog that is not evaluated on the unit circle,
such as

Li4(1/2) =
∞∑
n=1

1

n4

(
1

2

)n

= − 1

24
log4(2) +

1

4
ζ(2) log2(2) +

1

4
ζ(4)− 1

2
ζ(3, 1),

but then the result for A3 will acquire extra terms, involving powers of log2(2).
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3 Polylogs of the sixth root of unity

Colourings of the tetrahedron by mass:
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with finite parts guessed in Eur.Phys.J. C8 (1999) 311-333, as follows:

V j = lim
ε→0

(
Vj −

6ζ(3)

3ε

)
= 6ζ(3) + zj ζ(4) + uj U3,1 + sj Cl

2
2(π/3) + vj V3,1

with rational coefficients of 4 quadrilogs: ζ(4) = π4/90, the alternating double sum

U3,1 = ζ(3, 1) =
∑

m>n>0

(−1)m+n

m3n
,

the square of Cl2(π/3) =
∑

n>0 sin(nπ/3)/n
2, and the double sum

V3,1 =
∑

m>n>0

(−1)m cos(2πn/3)

m3n
.
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Rational fits to high-precision evaluations:

Vj zj uj sj vj V j

V1 3 10.4593111200909802869464400586922036529141

V2A −5 1.8007252504018747548184104863628604307161

V2N −13
2

−8 1.1202483970392420822725165482242095262757

V3T −9 −2.5285676844426780112456042998018111803828

V3S −11
2

−4 −2.8608622241393273502727845677732419175614

V3L −15
4

−6 −3.0270094939876520197863747017589572861507

V4A −77
12

−6 −5.9132047838840205304957178925354050268834

V4N −14 −16 −6.0541678585902197393693995691614487948131

V5 −469
27

8
3

−16 −8.2168598175087380629133983386010858249695

V6 −13 −8 −4 −10.0352784797687891719147006851589002386503

where only V1, V2A, V3T and V4N were known before, with V4N obtained from my study
of QED in Z.Phys. C54 (1992) 599-606, which gave

ΛMS
QED ≈ m e3π/2α

(3π/α)9/8

(
1− 175

64

α

π
+
{
−63

64
ζ(3) +

1

2
π2 log 2− 23

48
π2 +

492473

73728

}
α2

π2

)
,

for the integration constant of the four-loop MS β–function of single-favour QED.
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Colleagues in condensed-matter physics asked me to evaluate the equal-mass tetrahedron
in 3 dimensions, and I obliged with the guess

CTet = 25/2 (Cl2(4θ)− Cl2(2θ)) , with 3 sin θ = 1,

given in Eur.Phys.J. C8 (1999) 363-366.

I was eventually able to prove this, by dint of considering a more general case, C(a, b),
with masses a and b on opposite edges of the tetrahedron and unit masses on the other 4
edges. After much work, I derived the PDE

b
√
4− a2 − b2

4

∂

∂a

(
a
√
4− a2 − b2

4
C(a, b)

)
=

− log
(

a+ 2

a+ b+ 2

)
− b

a+ 2
log

(
a+ b+ 2

b+ 2

)
− 2b

a2 − 4
log

(
a+ 2

4

)
which was eventually solved, to give

1

8
abγ C(a, b) = Cl2(4ϕ) + Cl2(2ϕa + 2ϕb − 2ϕ) + Cl2(2ϕa − 2ϕ) + Cl2(2ϕb − 2ϕ)

− Cl2(2ϕa + 2ϕb − 4ϕ)− Cl2(2ϕa)− Cl2(2ϕb)− Cl2(2ϕ)

with
γ =

√
4− a2 − b2 = a tanϕa = b tanϕb = (a+ b+ 2) tanϕ.
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4 Multi-loop sunrise diagrams and modular forms

Polylogs are clearly too small a domain for the glories of QFT.

15

16

9

7

6 81

2

3

13

4

14

11

10

12
5

Francis Brown and Oliver Schnetz identified an 8-loop ϕ4 diagram for which a K3 surface,
obtained from the symmetric square of an elliptic curve with complex multiplication by
Q(

√
−7), seems to create an insuperable obstacle to evaluation in terms of polylogs. I

was able to identify the modular form whose Fourier coefficients enumerate the zeros of
the variety obtained from the denominator of an integrand, namely[

η(q)η(q7)
]3

= q
∏
j>0

(1− qj)3(1− q7j)3 =
∑
n>0

anq
n

= q − 3q2 + 5q4 − 7q7 − 3q8 + 9q9 − 6q11 + 3q12 − 6q13 + · · ·

where
η(q)

q1/24
=
∏
j>0

(1− qj) =
∑
n∈Z

(−1)nqn(3n+1)/2
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provides us with the modular form of weight 12:

∆(z) = [η(exp(2πiz))]24

which is holomorphic in the upper half plane H with ℑz > 0, where it transforms as

∆

(
az + b

cz + d

)
= (cz + d)12∆(z)

under the modular group

SL(2,Z) =

{(
a b
c d

)
, a, b, c, d ∈ Z, ad− bc = 1

}

with generators
∆(z + 1) = ∆(z), ∆(−1/z) = z12∆(z).

Sunrise, at last:

&%
'$
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At N loops, in 2 spacetime dimensions, the on-shell scalar sunrise integral is

SN+2 = 2N
∫ ∞

0
I0(t)[K0(t)]

N+1t dt

where the subscript denotes the number of Bessel functions. The irregular Bessel function
K0(t) results from internal edges with a common mass; its regular cousin I0(t) comes from
an external line, with the same mass. We may also consider

TN+3 = 2N
∫ ∞

0
I20 (t)[K0(t)]

N+1t dt

UN+4 = 2N
∫ ∞

0
I30 (t)[K0(t)]

N+1t dt

WN+5 = 2N
∫ ∞

0
I40 (t)[K0(t)]

N+1t dt

with more than one external line on-shell.

To obtain SN+2 as an integral over Schwinger parameters, α1 to αN , let A be the diagonal
N ×N matrix with entries Ai,j = αiδi,j, let u be the column vector of length N with unit
entries, ui = 1, and transpose ũ. Then, with M = A+ uũ, we obtain

SN+2 =
∫
αi>0

dα1 . . . dαN

Det(M)(Tr(A) + ũM−1u)

and these evaluations up to 3 loops

S3 =
∫ ∞

0

da

a2 + a+ 1
=

2π

3
√
3
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S4 =
∫ ∞

0

∫ ∞

0

da db

(a+ b)(a+ 1)(b+ 1)
=

π2

4

S5 =
∫ ∞

0

∫ ∞

0

∫ ∞

0

da db dc

(abc+ ab+ bc+ ca)(a+ b+ c) + (ab+ bc+ ca)

=
π3

2

(
1− 1√

5

)(
1 + 2

∑
n>0

exp
(
−
√
15πn2

))4

=
1

30
√
5
Γ
(
1

15

)
Γ
(
2

15

)
Γ
(
4

15

)
Γ
(
8

15

)

with a 3-loop result given in terms the square of a complete elliptic integral at the 15th
singular value, which yields Γ values via the Chowla-Selberg theorem.

A weight-3 modular form at 3 loops

At 3 loops, the denominator of Schwinger’s integrand implicates the weight-3 modular
form

f3(q) =
∑
n>0

A3,nq
n = η(q)η(q3)η(q5)η(q15)

∑
m,n∈Z

qm
2+mn+4n2

Its Dirichlet L function

L3(s) =
∑
n>0

A3,n

ns

obeys the functional equation

Λ3(s) = Λ3(3− s), with Λ3(s) = Γ(s)L3(s)/(2π/
√
15)s
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with a fast evaluation of

L3(2) =
∑
n>0

A3,n

n2

(
1 +

4πn√
15

)
exp

(
− 2πn√

15

)

inside the critical strip. Then, to high precision, we find that

3L3(2) = T 5 =

√
15

4π
S5

A weight-4 modular form at 4 loops

Here the modular form is simpler:

f4(q) =
∑
n>0

A4,nq
n =

[
η(q)η(q2)η(q3)η(q6)

]2
Its Dirichlet L function

L4(s) =
∑
n>0

A4,n

ns

obeys the functional equation

Λ4(s) = Λ4(4− s), with Λ4(s) = Γ(s)L4(s)/(2π/
√
6)s

The Mellin transform

Λ4(s) =
∑
n>0

A4,n

∫ ∞

0

dx

x
xs exp

(
−2πnx√

6

)
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may be analytically continued to give

Λ4(s) =
∑
n>0

A4,n

∫ ∞

1

dx

x

(
xs + x4−s

)
exp

(
−2πnx√

6

)

by virtue of the inversion symmetry

M4(λ) ≡ λ2
∑
n>0

A4,n exp

(
−2πnλ√

6

)
= M4(1/λ)

that gives the reflection symmetry Λ4(s) = Λ4(4− s).

Hence we obtain fast numerical evaluations of

L4(2) =
∑
n>0

A4,n

n2

(
2 +

4πn√
6

)
exp

(
−2πn√

6

)

L4(3) =
∑
n>0

A4,n

n3

(
1 +

2πn√
6
+

2π2n2

3

)
exp

(
−2πn√

6

)

inside the critical strip and discover (at a few digits accuracy) and check to thousands of
digits that

S6 = 48ζ(2)L4(2)

T 6 = 12L4(3)

U6 = 6L4(2)

with a multiple 48ζ(2) = 8π2 for the 4-loop sunrise diagram, to surprise Bloch and Brown.
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No Bessel-related weight-5 modular form?

In related studies of Kloosterman sums no corresponding modular form was found at
weight 5. Instead the combinatorics implicate integers whose residues modulo a prime p
derive from the norms of complex eigenvalues of a weight-3 Hecke newform. I found no
way to turn this integer data into an L function that might yield moments of 7 Bessel
functions.

A modular form of weight 6

For moments of 8 Bessel functions, there is a relevant modular form:

f6(q) =
∑
n>0

A6,nq
n = g(q)g(q2), with g(q) =

[
η(q)η(q3)

]2 ∑
m,n∈Z

qm
2+mn+n2

Proceeding along the lines of the 6-Bessel problem I accelerated the convergence of

L6(3) =
∑
n>0

A6,n

n3

(
2 +

4πn√
6
+

2π2n2

3

)
exp

(
−2πn√

6

)

L6(4) =
∑
n>0

A6,n

n4

(
1 +

2πn√
6
+

4π2n2

9
+

4π3n3

9
√
6

)
exp

(
−2πn√

6

)

L6(5) =
∑
n>0

A6,n

n5

(
1 +

2πn√
6
+

π2n2

3
+

2π3n3

9
√
6

+
π4n4

27

)
exp

(
−2πn√

6

)
and obtained the following integer multiples

T 8 = 216L6(5), U8 = 36L6(4), W 8 = L6(3)
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and the surprising relation
7L6(5) = 4ζ(2)L6(3)

which was also checked at high precision.

Comments and puzzles

1. The algebraic geometry of integrands, written in terms of Schwinger parameters,
gives clues about analytical structure.

2. In particular, it has motivated numerically successful guesses for massive Feynman
integrals involving 5, 6 and 8 Bessel functions.

3. One of the many integrals needed for the 4-loop contributions to the magnetic
moment of the electron has been evaluated

S6 = 8π2
∑
n>0

A4,n

n2

(
2 +

4πn√
6

)
exp

(
−2πn√

6

)

with coefficients readily obtained from the weight-4 modular form[
η(q)η(q2)η(q3)η(q6)

]2
=
∑
n>0

A4,nq
n

4. What sort of number might the K3 in ϕ4 produce at 8 loops?
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