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Why loop integrals?

[1 vital in making precise perturbative predictions in quantum field theory,
In general, and in the Standard Model of particle physics, in particular.

[1 precise data enables information on new physics to be extracted
iIndirectly (pre 4 July 2012)
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Why loop integrals?

[J equally important for interpretation of direct discovery - Latest update in
the search for the Higgs boson, CERN, 4 July 2012
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Why loop integrals?

[1 Interpreting size of bump as due to the production and decay of a
Standard Model-like Higgs particle requires

[1  Higgs production cross section [] probability of decay into a
(0) particular final state (BR)
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[1 The gluon fusion production cross section gets very large QCD
corrections +70% at NLO and +20% at NNLO!

Hypergeometric Functions and Loop Integrals —p. 4



Why loop integrals?

[ Loop integrals play an intrinsic part in

(a) the interpretation of experimental discoveries at the high energy
frontier

(b) extracting precise information from precision experiments

(c) in making the case for the physics potential of future high energy
facilities
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Scalar Loop integrals

complicated by the appearance of ultraviolet (UV) and infrared (IR)
singularities, and it has become customary to use dimensional
regularisation to extend the dimensionality of the loop integral away from
4-dimensions to D = 4 — 2¢, to regulate the infrared and ultraviolet
singularities.

general scalar m-loop integral in momentum space with n propagators
Vi...Up 7/7TD/2 7/7_‘_D/2 Ail A"Vln

with the propagator A; = momentum? - mass® + i0 e.g. ({1 + p1)? + i0
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Tensor Loop integrals

general tensor m-loop integral in momentum space with n propagators

Dt / dP1, /dDém o

o iwD/2 7 | igD/2 AV Alr

after extracting dependence on Lorentz indices, find scalar integrals
(sometimes in shifted dimensions and with additional powers of
propagators)

Integration by Parts identities Chetyrkin, Tkachov
Dimensional shift equation Tarasov
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General work plan

Process I

3—| e.g. QGRAF, FeynArts,...

Feynman Diagrams

& Traceology e.g. FeynCalc, FORM, ...
Y
Scalar and Tensor Integrals

&——— |BP e.g. FIRE, REDUZE2, AIR, ...

\ 4
Master Integrals

Lo 4N

Indirect Direct Numerical

+ Real Radiation + Phase Space

Physics Result
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Detailed work plan

Scalar and Tensor Integrals

IBP e.g. FIRE, REDUZE2, AIR, ...

4| Master Integrals ‘
v l

Indirect | | Direct | | Numerical |
e.g. Differential Equations e.g. Parametric integration e.g. Sector Decomposition
Difference Equations Mellin Barnes
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Where do hypergeometric functions fit in?

['(1 —2¢)I'(1 — 3¢)
['(2 —2¢)'(2 — 3¢)(2 — 4e)
['(1—3e)'(3e)['(2¢)'(e)T(1 — 2¢)

A63 = (-Q*)

X

I'(1—¢)
I'(3e — 1)I'(1 —
(3¢ — DI €)3F2(1,1—6,1—26,2—26,2—36,1)
I'(1 — 2e)
2 2 2 2 Gehrmann, Heinrich, Huber, Studerus
P* = Q yP1 — P2 — 0

[] this is a one-scale integral (with unit propagators).

[1 All the scale dependence is in the prefactor. The hypergeometric
function must therefore be evaluated at unity!

[1 evaluation of p Fp_1 hypergeometric functions about integer or
half-integer parameters can be done with the HypExp Mathematica
package. Maitre, Huber
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Where do hypergeometric functions fit in?

63 -~ L .3 +1<55+7r2>
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3 3
— — — 65 O
+€<2+2+10 3 3 CE’>+(€)
2 2 .2 2 Gehrmann, Heinrich, Huber, Studerus
P*=Q ,p1 = p3 =0

[] this is a one-scale integral (with unit propagators).

[1 All the scale dependence is in the prefactor. The hypergeometric
function must therefore be evaluated at unity!

[1 evaluation of p Fp_1 hypergeometric functions about integer or
half-integer parameters can be done with the HypExp Mathematica
package. Maitre, Huber
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Where do hypergeometric functions fit in?

2
Q7
19 : :
[ massless one-loop triangle with
” two offshell legs, Q? > Q3
] analytic continuation to Q7 < Q2
8
2
Q3
D D D
P, = (cnE (@E e (8- -w)T8 v -l +va+ s - 2)
vivov3 1 F(I/Q)F(Vg)F(D — V] — UV — VB)
X o F ( +v2 + = 1 +v + D Q%)
V1,V 14 vy — — 14 vy — —, —
2471 1,71 2 3 27 1 3 9 ’ Q%

B @) @i BT )T (B on) T (e - §)
1 2 ()T (v3)['(D —v1 —v2 —v3)
D D 2
X2k <V275_V371‘|—5—1/1—1/37g_§>
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Another example: the massless off-shell triangle

ko
V3
kl 1
V2
ks

kY = Q1, ky = Q3, ks = Q;
My = My = Mz =0

Mellin Barnes: Davydychev
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Another example: the massless off-shell triangle

D D_yi5g F(Q _V12)F(Q —V13)F(1/123— 2)
I£V2u3 = (=1)=2 (Q%) 2 2 F(VQ)F(VQS)F( s 2

D D D Q2 Q3
X F4<V1,V123—5 1+V13—5 1+v 12—— QQ’ﬁ
D_,, r (% — I/12> r (1/13 — %) r (% — 1/3>
['(v1) I (v3) I' (D — v123)

D D
X Fy <V275_V371+5—1/13,1—|—1/12__ QQ %)

Q3 Q3

D_,, r (% — l/13> r (1/12 — %) r (% — 1/2>

D
2

+ (D=7 (Q1) 7 (@)

D —v
+ (-7 (Q7) 7 (@3
( ) ( 1) ( 3) F(Vl)F(VQ)F(D_V123)
D D D QQ QS
><F4<1/3,5—1/271+1/13—5 +——’/1>@>@
T <V12 — 2) r (V13 — Q) r (2 - Vl)
D v —L D_, Dy 2 2 2
+ (-7 (@) (@) (@)
-1z (@) (@3) (@3) (1) T (v2) T (v3)
D D D Q3 Q3
X F4 (D — V123, E — U, 1+ 5 — 13, 1+ 5 — a2, Q_%’ Ql_%aer eometric Functions and Loop Integrals — p. 14



Another example: the massless off-shell triangle

F, is one of the Appell functions

(c, m+n)(B,m+mn) a™ y"
(y,m)(v,n)  ml nl

Fy(a, 8,77 z,y) = )
m,n=0
where («a,n) is the Pochhammer symbol
converges when
Ve+/y <1
l.e. precisely on the physical phase space
analytic continuation gives solutions in other physical regions
has a double integral representation
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Another example: the massless off-shell triangle

In fact, for unit propagators, v = v, = v3 = 1, the Appell F; functions
collapse onto , F} functions

F‘*(“’B’B’B’ T (1—as><1—y>>

=1 =2)%(1 —y)%2F1 (a, 1 + o=, 8,zy),

F‘*(O"B’”“ S gy L (1—x><1—y>>

:(1_y)a2F1 ((X?ﬁal—}_a_B)_

l—=x

x(l—y)>_
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All one-loop integrals

[1 Using difference equations, and unit propagators, one can find
expressions for arbitrary masses and kinematics

Fleischer, Jegerlehner, Tarasov

[1 two point functions: 5 F}
[1 three point functions: >, F; and F}

(()é,m‘}‘n)(ﬁbm)(ﬁ??n) m, n
Ly
(v, m 4+ n)mln!

Fl(a751752777$7y) — Z
[J four point functions: 5 F, F; and the Lauricella-Saran triple series
FS(Oél,062,053,51,52,53,’}/1,’71,’71,33,y,Z)

_ Z (a1, 7) (a2, m +n)(B1,7)(B2,m)(B3,n) Ty

z
(v1,7 +m + n)rim!n!

[J In this case, the variables are complicated functions of the kinematic
scales and internal masses
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Connection to polylogarithms

through expansion of integrand in integral representations e.g., F}

1B 1
Falen f1, o 2, 9) = 5 a>r(<1)— ) /o duu® ™ (1= u)? T (1 — ua) P (1 uy) T2

(

typically the parameters involve € and can be expanded

2
(1—wux) ¢ —=>1—¢€ln(l —uz)+ % In?(1 — uz) + O(e?)

Mathematica package HyperDIRE can reduce Appel Fy, ..., Fy
functions to a set of basis functions

Bytev, Kalmykov, Kniehl
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Hypergeometric simplifications

[1 In general there are three types of identities that relate hypergeometric

functions
[1 Analytic continuations that connect functions in different regions of
convergence

[ Reduction formulae which allow the functions to be expressed as
simpler series for certain values of the parameters

[1  Transformations which relate similar functions with different
arguments

[1 For the functions of two variables, many of these relations are known in
the literature

[ new relations found comparing different expressions of loop integrals

Kniehl, Tarasov

[1 To my knowledge, these relations and identities are less well known for
functions of three or more variables - hope to learn more this week
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Why hypergeometric sums?

hypergeometric sums sometimes have integral representations
themselves, in which an expansion in € can be made, yielding
expressions in logarithms, dilogarithms etc.

when the series is convergent and well behaved in a particular region of
phase space, it can be numerically evaluated. In fact, each
hypergeometric sum immediately allows an asymptotic expansion of the
iIntegral in terms of ratios of momentum and mass scales.

through analytic continuation formulae, the hypergeometric sums valid in
one kinematic domain can be re-expressed in a different kinematic
region.

the convergence properties of the hypergeometric functions linked to the
“physics" via the phase space boundaries

still need to be able to turn the series into known numbers/functions?
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Examples: three loop vertex
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Heinrich, Huber, Kosower, Smirnov; Baikov, Chetrykin, Smirnov,
Smirnov, Steinhauser; Lee, Smirnov, Smirnov
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Loop integrals into hypergeometric sums

[1 The Negative Dimension (NDIM) method gives an efficient way of
converting a loop integral into multiple hypergeometric sums.

Halliday, Ricotta (87), Broadhurst (87) Suzuki, Schmidt (97), Anastasiou, NG, Oleari (99)

[1 exploits analytic properties of integral

[1 treats the case of arbitrary powers of propagators and arbitrary
dimension

1 rapidly (and automatically) gives result as combinations of multiple
hypergeometric sums

[1 gives solutions valid in all regions of phase space

[1 knowledge of convergence properties of hypergeometric sums
needed to construct full solution in a particular region of phase space

[1 still need to be able to turn multiple series into known
numbers/functions
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Schwinger parameterisation

[1 general scalar m-loop integral in momentum space with n propagators

7P _ dPt; A"l !
V1..Up imtD/2 """ imD/2 Alljl VAT

[ Schwinger parameterisation:

1 (=1)»

O
/ daci:vz’./i_l exp(x; A;),
0

one (independent) parameter for each propagator, such that
5 B n <_1)1/7; 00 et dD€1 dng n L
Il/l...l/n — < F(VZ) /0 dm’bxi > / 7/7TD/2 ce Z7TD/2 exXp zzzl 'CEZAZ )

=1
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Schwinger parameterisation continued

[ Completing the square and integrating out loop momenta

(1) [0 - 1
LQ...VR = (H <F(V)-)/O dx; . 1) D2 exp(%) exp (—M).

1=1

[ Here, O, P and M depend on the mass/momentum scales and the
parameters, and can be simply extracted from loop integral

0 M = > z;M? where the sum runs over the propagators with mass
M?

1

[1 P is the first Symanzik polynomial (sometimes called /) composed
of X;

[1 Q isthe second Symanzik polynomial (sometimes called F)
composed of z; and invariants (p; + p;)*

[1  This is the starting point for the NDIM method
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