Generalization of Risch's Algorithm to Special Functions

Clemens G. Raab (RISC)

LHCPhenonet School Hagenberg, July 9, 2012

Overview

- Introduction to symbolic integration
- Relevant classes of functions and Risch's algorithm
- Basics of differential fields
- A generalization of Risch's algorithm
 - Introduction
 - Inside the algorithm
- Application to definite integrals depending on parameters

Introduction to symbolic integration

Computer algebra

- Model the functions by algebraic structures
- Computations in the algebraic framework
- Interpret result in terms of functions

Computer algebra

- Model the functions by algebraic structures
- 2 Computations in the algebraic framework
- Interpret result in terms of functions

Different approaches and structures

• Differential algebra: differential fields

Computer algebra

- Model the functions by algebraic structures
- 2 Computations in the algebraic framework
- Interpret result in terms of functions

Different approaches and structures

- Differential algebra: differential fields
- Holonomic systems: Ore algebras

Computer algebra

- Model the functions by algebraic structures
- 2 Computations in the algebraic framework
- Interpret result in terms of functions

Different approaches and structures

- Differential algebra: differential fields
- Holonomic systems: Ore algebras
- Rule-based: expressions, tables of transformation rules
- ...

Indefinite integration

Antiderivatives

$$\int f(x)\,dx=g(x)$$

Indefinite integration

Antiderivatives

$$\int f(x)\,dx=g(x)$$

Examples

$$\int \frac{\text{Li}_{3}(x) - x\text{Li}_{2}(x)}{(1 - x)^{2}} dx = \frac{x}{1 - x} \left(\text{Li}_{3}(x) - \text{Li}_{2}(x)\right) + \frac{\ln(1 - x)^{2}}{2}$$

$$\int \text{Ai}'(x)^{2} dx = \frac{1}{3} \left(x\text{Ai}'(x)^{2} + 2\text{Ai}(x)\text{Ai}'(x) - x^{2}\text{Ai}(x)^{2}\right)$$

$$\int \frac{1}{xJ_{n}(x)Y_{n}(x)} dx = \frac{\pi}{2} \ln\left(\frac{Y_{n}(x)}{J_{n}(x)}\right)$$

Definite integration

Integrals depending on parameters

$$\int_a^b f(x,y)\,dx = g(y)$$

Definite integration

Integrals depending on parameters

$$\int_a^b f(x,y)\,dx = g(y)$$

Examples |

$$\int_0^\infty \frac{zx}{e^x - z} dx = \operatorname{Li}_2(z)$$

$$\int_0^\infty e^{-sx} \gamma(a, x) dx = \frac{\Gamma(a)}{s(s+1)^a}$$

$$\int_0^1 e^{-2n\pi i x} \ln(\sin(\frac{\pi}{2}x)) dx = -\frac{1}{4n} + \frac{i}{n\pi} \sum_{k=1}^n \frac{1}{2k-1}$$

Example: Gamma function

$$\Gamma(z) := \int_0^\infty \underbrace{x^{z-1} e^{-x}}_{=:f(z,x)} dx \quad \text{for } z > 0$$

We compute

$$zf(z,x) - f(z+1,x) = \frac{d}{dx}x^z e^{-x}$$

Example: Gamma function

$$\Gamma(z) := \int_0^\infty \underbrace{x^{z-1} e^{-x}}_{=:f(z,x)} dx \quad \text{for } z > 0$$

We compute

$$zf(z,x)-f(z+1,x)=\frac{d}{dx}x^ze^{-x}$$

After integrating from 0 to ∞ we obtain

$$z\int_{0}^{\infty}f(z,x)dx-\int_{0}^{\infty}f(z+1,x)dx=x^{z}e^{-x}\Big|_{x=0}^{\infty}$$

Example: Gamma function

$$\Gamma(z) := \int_0^\infty \underbrace{x^{z-1} e^{-x}}_{=:f(z,x)} dx \quad \text{for } z > 0$$

We compute

$$zf(z,x)-f(z+1,x)=\frac{d}{dx}x^ze^{-x}$$

After integrating from 0 to ∞ we obtain

$$z \int_0^\infty f(z, x) dx - \int_0^\infty f(z + 1, x) dx = x^z e^{-x} \Big|_{x=0}^\infty$$

In other words, we proved

$$z\Gamma(z)-\Gamma(z+1)=0$$

Integrals depending on one parameter

•
$$c_0(y)f(x,y) + \cdots + c_m(y)\frac{\partial^m f}{\partial y^m}(x,y) = \frac{d}{dx}g(x,y)$$

Integrals depending on one parameter

• $c_0(y)f(x,y) + \cdots + c_m(y)\frac{\partial^m f}{\partial y^m}(x,y) = \frac{d}{dx}g(x,y)$ yields an ODE for

$$I(y) := \int_a^b f(x, y) dx$$

Integrals depending on one parameter

• $c_0(y)f(x,y) + \cdots + c_m(y)\frac{\partial^m f}{\partial y^m}(x,y) = \frac{d}{dx}g(x,y)$ yields an ODE for

$$I(y) := \int_{a}^{b} f(x, y) dx$$

• $c_0(n)f(x,n) + \cdots + c_m(n)f(x,n+m) = \frac{d}{dx}g(x,n)$

Integrals depending on one parameter

• $c_0(y)f(x,y) + \cdots + c_m(y)\frac{\partial^m f}{\partial y^m}(x,y) = \frac{d}{dx}g(x,y)$ yields an ODE for

$$I(y) := \int_{a}^{b} f(x, y) dx$$

• $c_0(n)f(x,n) + \cdots + c_m(n)f(x,n+m) = \frac{d}{dx}g(x,n)$ yields a recurrence for

$$I(n) := \int_a^b f(x, n) dx$$

Compute linear relation of integrals

f(x)

Given
$$f(x)$$

, find
$$g(x)$$

$$=g'(x)$$

s.t.

Compute linear relation of integrals

Given
$$f_0(x), \ldots, f_m(x)$$
, find $g(x)$

s.t.

$$=g'(x)$$

Compute linear relation of integrals

Given
$$f_0(x), \ldots, f_m(x)$$
, find $g(x)$ and c_0, \ldots, c_m const. w.r.t. x s.t. $f(x) = g'(x)$

Compute linear relation of integrals

Given
$$f_0(x), \ldots, f_m(x)$$
, find $g(x)$ and c_0, \ldots, c_m const. w.r.t. x s.t.
$$c_0 f_0(x) + \cdots + c_m f_m(x) = g'(x)$$

Compute linear relation of integrals

Given $f_0(x), \ldots, f_m(x)$, find g(x) and c_0, \ldots, c_m const. w.r.t. x s.t.

$$c_0f_0(x)+\cdots+c_mf_m(x)=g'(x)$$

Transfer this to a relation of corresponding integrals

$$c_0 \int_a^b f_0(x) dx + \cdots + c_m \int_a^b f_m(x) dx = g(b) - g(a)$$

Compute linear relation of integrals

Given $f_0(x), \ldots, f_m(x)$, find g(x) and c_0, \ldots, c_m const. w.r.t. x s.t.

$$c_0f_0(x)+\cdots+c_mf_m(x)=g'(x)$$

Transfer this to a relation of corresponding integrals

$$c_0 \int_a^b f_0(x) dx + \cdots + c_m \int_a^b f_m(x) dx = g(b) - g(a)$$

Certificate

$$c_0 \int_a^b f_0(x) dx + \dots + c_m \int_a^b f_m(x) dx = r$$

Compute linear relation of integrals

Given $f_0(x), \ldots, f_m(x)$, find g(x) and c_0, \ldots, c_m const. w.r.t. x s.t.

$$c_0f_0(x)+\cdots+c_mf_m(x)=g'(x)$$

Transfer this to a relation of corresponding integrals

$$c_0 \int_a^b f_0(x) dx + \cdots + c_m \int_a^b f_m(x) dx = g(b) - g(a)$$

Certificate

g(x) is a certificate for the relation

$$c_0 \int_a^b f_0(x) dx + \cdots + c_m \int_a^b f_m(x) dx = r$$

It is easy to verify

$$c_0 f_0(x) + \cdots + c_m f_m(x) = g'(x)$$
 and $r = g(b) - g(a)$

Relevant classes of functions and Risch's algorithm

Characterization

Functions constructed from rational functions by

basic arithmetic operations +, -, *, /

Characterization

Functions constructed from rational functions by

- basic arithmetic operations +, -, *, /
- taking solutions of algebraic equations

$$y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$$

Characterization

Functions constructed from rational functions by

- basic arithmetic operations +, -, *, /
- taking solutions of algebraic equations

$$y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$$

• taking logarithms $y(x) = \log(a(x))$

Characterization

Functions constructed from rational functions by

- basic arithmetic operations +, -, *, /
- taking solutions of algebraic equations $y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$

$$y(x) + a_{m-1}(x)y(x) + \cdots + a_0(x) =$$

- taking logarithms $y(x) = \log(a(x))$
- taking exponentials $y(x) = \exp(a(x))$

Characterization

Functions constructed from rational functions by

- basic arithmetic operations +, -, *, /
- taking solutions of algebraic equations $y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$
- taking logarithms $y(x) = \log(a(x))$
- taking exponentials $y(x) = \exp(a(x))$

Examples

algebraic functions, logarithms, c^x , x^c , trigonometric/hyperbolic functions and their inverses, . . .

$$\frac{\ln(x+3)^2 - 4x}{\exp(\exp(x) - \frac{1}{x})\sqrt{\cos(2x)}} \frac{\arctan(\tanh(\frac{x}{2}))}{x^{x \ln(x)} \tan(x)}$$

Elementary integrals of elementary functions

Problem

- Given an elementary function f(x)
- Decide whether there is an elementary function g(x) with g'(x) = f(x) and compute such a g(x) if it exists

Elementary integrals of elementary functions

Problem

- Given an elementary function f(x)
- Decide whether there is an elementary function g(x) with g'(x) = f(x) and compute such a g(x) if it exists

Algorithm

Risch 1969, Bronstein 1990

Elementary integrals of elementary functions

Problem

- Given an elementary function f(x)
- Decide whether there is an elementary function g(x) with g'(x) = f(x) and compute such a g(x) if it exists

Algorithm

Risch 1969, Bronstein 1990

Examples

$$\int \frac{1}{x^2 - 2} \, dx = \frac{\sqrt{2}}{4} \log \left(\frac{x - \sqrt{2}}{x + \sqrt{2}} \right)$$

 $\int \exp(x^2) dx \text{ is not elementary}$

Example

$$\int \frac{x^4 + 2x^3 - x^2 + 3}{(x+1)(x+2)^2} \, dx = ?$$

Example

$$\int \frac{x^4 + 2x^3 - x^2 + 3}{(x+1)(x+2)^2} \, dx = ?$$

Split numerator $a(x) = x^4 + 2x^3 - x^2 + 3$ of integrand

$$a(x) = b(x) \cdot (-(x+1)) + c(x) \cdot (x+2).$$

By EEA we compute

$$b(x) = -1$$
 $c(x) = x^3 - x + 1.$

Example

$$\int \frac{x^4 + 2x^3 - x^2 + 3}{(x+1)(x+2)^2} \, dx = ?$$

Split numerator $a(x) = x^4 + 2x^3 - x^2 + 3$ of integrand

$$a(x) = b(x) \cdot (-(x+1)) + c(x) \cdot (x+2).$$

By EEA we compute

$$b(x) = -1$$
 $c(x) = x^3 - x + 1.$

So

$$\int \frac{x^4 + 2x^3 - x^2 + 3}{(x+1)(x+2)^2} dx = \frac{b(x)}{x+2} + \int \frac{c(x) - (x+1)b'(x)}{(x+1)(x+2)} dx$$
$$= -\frac{1}{x+2} + \int \frac{x^3 - x + 1}{(x+1)(x+2)} dx.$$

$$\int \frac{x^3 - x + 1}{(x+1)(x+2)} \, dx = ?$$

$$\int \frac{x^3 - x + 1}{(x+1)(x+2)} \, dx = ?$$

For determining the residues we compute the Gröbner basis of

$$\{a(x)-zb'(x),b(x)\}$$

w.r.t. z < x with numerator $a(x) = x^3 - x + 1$ and denominator b(x) = (x+1)(x+2):

$$\{(z-1)(z-5), x+\frac{1}{4}z+\frac{3}{4}\}$$

$$\int \frac{x^3 - x + 1}{(x+1)(x+2)} \, dx = ?$$

For determining the residues we compute the Gröbner basis of

$$\{a(x)-zb'(x),b(x)\}$$

w.r.t. z < x with numerator $a(x) = x^3 - x + 1$ and denominator b(x) = (x+1)(x+2):

$$\{(z-1)(z-5), x+\frac{1}{4}z+\frac{3}{4}\}$$

So with the residues z = 1 and z = 5

$$\int \frac{x^3 - x + 1}{(x+1)(x+2)} dx = 1 \ln\left(x + \frac{1}{4} + \frac{3}{4}\right) + 5 \ln\left(x + \frac{5}{4} + \frac{3}{4}\right) + \int x - 3 dx$$

$$\int x - 3 \, dx = ?$$

$$\int x - 3 \, dx = ?$$

Ansatz:

$$x-3=\frac{d}{dx}(a_2x^2+a_1x)$$

Comparing coefficients leads to

$$a_2 = \frac{1}{2}$$
 $a_1 = -3$.

$$\int x - 3 \, dx = ?$$

Ansatz:

$$x-3=\frac{d}{dx}(a_2x^2+a_1x)$$

Comparing coefficients leads to

$$a_2 = \frac{1}{2}$$
 $a_1 = -3$.

Altogether, we obtained

$$\int \frac{x^4 + 2x^3 - x^2 + 3}{(x+1)(x+2)^2} dx = -\frac{1}{x+2} + \ln(x+1) + 5\ln(x+2) + \frac{1}{2}x^2 - 3x$$

Liouvillian functions

Characterization

Functions constructed from rational functions by

- basic arithmetic operations +, -, *, /
- taking solutions of algebraic equations $y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$
- taking antiderivatives y'(x) = a(x)
- taking exponentials $y(x) = \exp(a(x))$

Liouvillian functions

Characterization

Functions constructed from rational functions by

- basic arithmetic operations +, -, *, /
- taking solutions of algebraic equations $y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$
- taking antiderivatives y'(x) = a(x)
- taking exponentials $y(x) = \exp(a(x))$

Examples

elementary functions, exponential integrals, polylogarithms, error functions, Fresnel integrals, incomplete gamma function, . . .

Ei(2 In(x)) Li₂(e^x)
$$e^{-x^2} \left(\frac{\pi}{2} erfi(x) - \frac{1}{2} Ei(x^2) \right)$$

$$\int_{-\infty}^{x} \cos(\frac{\pi}{2} u^2) (C(u) + \frac{1}{2}) (S(u) - \frac{1}{2}) du$$

Generalization

Characterization

Functions constructed from rational functions by

- basic arithmetic operations +, -, *, /
- taking solutions of algebraic equations $y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$
- taking solutions of 2-dimensioinal differential systems

$$\begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}' = \begin{pmatrix} a_{11}(x) & a_{12}(x) \\ a_{21}(x) & a_{22}(x) \end{pmatrix} \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} + \begin{pmatrix} b_1(x) \\ b_2(x) \end{pmatrix}$$

Generalization

Characterization

Functions constructed from rational functions by

- basic arithmetic operations +, -, *, /
- taking solutions of algebraic equations $y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$
- taking solutions of 2-dimensioinal differential systems

$$\begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}' = \begin{pmatrix} a_{11}(x) & a_{12}(x) \\ a_{21}(x) & a_{22}(x) \end{pmatrix} \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} + \begin{pmatrix} b_1(x) \\ b_2(x) \end{pmatrix}$$

Examples

Liouvillian functions, orthogonal polynomials, associated Legendre functions, complete elliptic integrals, Airy/Scorer functions, Bessel/Struve/Anger/Weber/Lommel/Kelvin functions, Whittaker functions, hypergeometric functions, Heun functions, Mathieu functions, . . .

Basics of differential fields

Differential field

(F,D) such that for any $f,g\in F$

$$D(f+g) = Df + Dg$$
 and $D(fg) = (Df)g + f(Dg)$

Differential field

(F,D) such that for any $f,g\in F$

$$D(f+g) = Df + Dg$$
 and $D(fg) = (Df)g + f(Dg)$

Constant field: $Const(F) := \{c \in F \mid Dc = 0\}$

Differential field

(F,D) such that for any $f,g\in F$

$$D(f+g) = Df + Dg$$
 and $D(fg) = (Df)g + f(Dg)$

Constant field: Const $(F) := \{c \in F \mid Dc = 0\}$

Examples

$$(\mathbb{Q}(x), \frac{d}{dx})$$
 $(\mathbb{Q}(e^x), \frac{d}{dx})$ $(\mathbb{R}(n, x, x^n, \ln(x)), \frac{d}{dx})$

$$(\mathbb{C}(n,x,J_n(x),J_{n+1}(x),Y_n(x),Y_{n+1}(x)),\tfrac{d}{dx})$$

Differential field

(F,D) such that for any $f,g\in F$

$$D(f+g) = Df + Dg$$
 and $D(fg) = (Df)g + f(Dg)$

Constant field: Const $(F) := \{c \in F \mid Dc = 0\}$

Examples

$$(\mathbb{Q}(x), \frac{d}{dx}) \qquad (\mathbb{Q}(e^x), \frac{d}{dx}) \qquad (\mathbb{R}(n, x, x^n, \ln(x)), \frac{d}{dx})$$
$$(\mathbb{C}(n, x, J_n(x), J_{n+1}(x), Y_n(x), Y_{n+1}(x)), \frac{d}{dx})$$

NB

$$f(x), g(x) \in F \implies f(x) + g(x), f(x)g(x), \frac{f(x)}{g(x)}, f'(x) \in F$$
, but $f(x)^{g(x)}, f(g(x))$, and $\int f(x) dx$ in general are not in F

Differential field extensions

Adjoin new elements

To a differential field (F, D) we can adjoin new elements t_1, \ldots, t_n to get a field $F(t_1, \ldots, t_n)$.

Differential field extensions

Adjoin new elements

To a differential field (F, D) we can adjoin new elements t_1, \ldots, t_n to get a field $F(t_1, \ldots, t_n)$.

The result is a differential field extension of (F, D) if

- $Dt_i \in F(t_1, \ldots, t_n)$ and
- *D* can be extended consistently to $F(t_1, \ldots, t_n)$.

Monomial extensions

Definition

t is a monomial over (F, D) if

- t is transcendental over F and
- Dt is a polynomial in t with coefficients from F

Monomial extensions

Definition

t is a monomial over (F, D) if

- t is transcendental over F and
- Dt is a polynomial in t with coefficients from F

Examples

ln(x), exp(x), tan(x) are monomials over $(\mathbb{Q}(x), \frac{d}{dx})$:

- $\frac{d}{dx} \tan(x) = \tan(x)^2 + 1$

Monomial extensions

Definition

t is a monomial over (F, D) if

- t is transcendental over F and
- Dt is a polynomial in t with coefficients from F

Examples

ln(x), exp(x), tan(x) are monomials over $(\mathbb{Q}(x), \frac{d}{dx})$:

- $\frac{d}{dx} \exp(x) = \exp(x)$
- $\frac{d}{dx} \tan(x) = \tan(x)^2 + 1$

Towers of monomial extensions

We consider differential fields $(C(t_1, ..., t_n), D)$ such that each t_i is a monomial over $(C(t_1, ..., t_{i-1}), D)$.

Elementary extensions

Elementary extension

Any (E, D) generated from (F, D) by adjoining

- algebraics: $y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$
- logarithms: $y(x) = \log(a(x))$
- exponentials: $y(x) = \exp(a(x))$

Elementary extensions

Elementary extension

Any (E, D) generated from (F, D) by adjoining

- algebraics: $y(x)^m + a_{m-1}(x)y(x)^{m-1} + \cdots + a_0(x) = 0$
- logarithms: $y(x) = \log(a(x))$
- exponentials: $y(x) = \exp(a(x))$

NB

The definition is relative to F. An elementary extension E contains non-elementary functions if F does.

A generalization of Risch's algorithm

Introduction

Problem

• Given (F, D) and $f_0, \ldots, f_m \in F$

Problem

- Given (F, D) and $f_0, \ldots, f_m \in F$
- Find all $c_0, \ldots, c_m \in Const(F)$ s.t.

$$c_0 f_0 + \cdots + c_m f_m$$

has an elementary integral over (F, D)

Problem

- Given (F, D) and $f_0, \ldots, f_m \in F$
- Find all $c_0, \ldots, c_m \in Const(F)$ s.t.

$$c_0f_0+\cdots+c_mf_m=Dg$$

has an elementary integral over (F, D) and compute such g

Problem

- Given (F, D) and $f_0, \ldots, f_m \in F$
- Find all $c_0, \ldots, c_m \in Const(F)$ s.t.

$$c_0f_0+\cdots+c_mf_m=Dg$$

has an elementary integral over (F, D) and compute such g

Definition

We say that $f \in F$ has an elementary integral over (F, D)

Problem

- Given (F, D) and $f_0, \ldots, f_m \in F$
- Find all $c_0, \ldots, c_m \in Const(F)$ s.t.

$$c_0f_0+\cdots+c_mf_m=Dg$$

has an elementary integral over (F, D) and compute such g

Definition

We say that $f \in F$ has an elementary integral over (F, D) if there exists an elementary extension (E, D) of (F, D) and $g \in E$ s.t.

$$Dg = f$$

Problem

- Given (F, D) and $f_0, \ldots, f_m \in F$
- Find all $c_0, \ldots, c_m \in Const(F)$ s.t.

$$c_0f_0+\cdots+c_mf_m=Dg$$

has an elementary integral over (F, D) and compute such g

Definition

We say that $f \in F$ has an elementary integral over (F, D) if there exists an elementary extension (E, D) of (F, D) and $g \in E$ s.t.

$$Dg = f$$

NB

The definition is relative to F. The integral g need not be an elementary function.

Admissible differential fields

We call a tower of monomial extensions

$$(F,D)=(C(t_1,\ldots,t_n),D)$$
 admissible, if $\mathsf{Const}(F)=C$ and

Admissible differential fields

We call a tower of monomial extensions $(F, D) = (C(t_1, ..., t_n), D)$ admissible, if Const(F) = C and for each t_i and $F_{i-1} := C(t_1, ..., t_{i-1})$ either

- **1** t_i is a Liouvillian monomial over F_{i-1} , i.e., either
 - $Dt_i \in F_{i-1}$ (primitive), or
 - 2 $\frac{Dt_i}{t_i} \in F_{i-1}$ (hyperexponential); or

Admissible differential fields

We call a tower of monomial extensions

$$(F,D) = (C(t_1,\ldots,t_n),D)$$
 admissible, if $Const(F) = C$ and for each t_i and $F_{i-1} := C(t_1,\ldots,t_{i-1})$ either

- **1** t_i is a Liouvillian monomial over F_{i-1} , i.e., either
 - $Dt_i \in F_{i-1}$ (primitive), or
 - 2 $\frac{Dt_i}{t_i} \in F_{i-1}$ (hyperexponential); or
- ② there is a $q \in F_{i-1}[t_i]$ with $deg(q) \ge 2$ such that

 - 2 Dy = q(y) does not have a solution $y \in \overline{F_{i-1}}$.

Admissible differential fields

We call a tower of monomial extensions

$$(F,D) = (C(t_1,\ldots,t_n),D)$$
 admissible, if $Const(F) = C$ and for each t_i and $F_{i-1} := C(t_1,\ldots,t_{i-1})$ either

- **1** t_i is a Liouvillian monomial over F_{i-1} , i.e., either
 - $Dt_i \in F_{i-1}$ (primitive), or
 - 2 $\frac{Dt_i}{t_i} \in F_{i-1}$ (hyperexponential); or
- $oldsymbol{\circ}$ there is a $q \in F_{i-1}[t_i]$ with $\deg(q) \geq 2$ such that

 - 2 Dy = q(y) does not have a solution $y \in \overline{F_{i-1}}$.

NB

In a tower of monomial extensions all generators t_i are algebraically independent over C.

History

Risch 1969, Mack 1976

complete algorithm for regular elementary (F, D)

Singer et al. 1985

complete algorithm for regular Liouvillian (F, D)

Bronstein 1990, 1997

partial results for (F, D) a tower of monomial extensions

CGR 2012

complete algorithm for (F, D) a tower of monomial extensions subject to some technical conditions

A generalization of Risch's algorithm

Inside the algorithm

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only

• integrands from $K(t_n) = C(t_1, \ldots, t_n)$

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only

- integrands from $K(t_n) = C(t_1, \ldots, t_n)$
- ② compute parts of the integral involving t_n

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only

- **1** integrands from $K(t_n) = C(t_1, \ldots, t_n)$
- 2 compute parts of the integral involving t_n
- 3 subtract its derivative \Rightarrow remaining integrands are from $K = C(t_1, \dots, t_{n-1})$

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only

- **1** integrands from $K(t_n) = C(t_1, \ldots, t_n)$
- 2 compute parts of the integral involving t_n
- 3 subtract its derivative \Rightarrow remaining integrands are from $K = C(t_1, \dots, t_{n-1})$
- proceed recursively with the smaller tower

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only

- **1** integrands from $K(t_n) = C(t_1, \ldots, t_n)$
- $oldsymbol{2}$ compute parts of the integral involving t_n
- **3** subtract its derivative \Rightarrow remaining integrands are from $K = C(t_1, \dots, t_{n-1})$
- proceed recursively with the smaller tower

At each level

4 Hermite Reduction for reducing denominator

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only

- **1** integrands from $K(t_n) = C(t_1, \ldots, t_n)$
- $oldsymbol{2}$ compute parts of the integral involving t_n
- **3** subtract its derivative \Rightarrow remaining integrands are from $K = C(t_1, \dots, t_{n-1})$
- proceed recursively with the smaller tower

At each level

- Hermite Reduction for reducing denominator
- Residue Criterion for computing elementary extensions

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only

- **1** integrands from $K(t_n) = C(t_1, \ldots, t_n)$
- $oldsymbol{2}$ compute parts of the integral involving t_n
- **3** subtract its derivative \Rightarrow remaining integrands are from $K = C(t_1, \dots, t_{n-1})$
- proceed recursively with the smaller tower

At each level

- Hermite Reduction for reducing denominator
- Residue Criterion for computing elementary extensions
- \odot Treat reduced integrands by solving auxiliary problems in K

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only

- **1** integrands from $K(t_n) = C(t_1, \ldots, t_n)$
- 2 compute parts of the integral involving t_n
- **3** subtract its derivative \Rightarrow remaining integrands are from $K = C(t_1, \dots, t_{n-1})$
- proceed recursively with the smaller tower

At each level

- Hermite Reduction for reducing denominator
- Residue Criterion for computing elementary extensions
- $oldsymbol{\circ}$ Treat reduced integrands by solving auxiliary problems in K
- remaining integrands are from K, reduce elementary integration over $K(t_n)$ to elementary integration over K

Structural observations: orders of poles

Rational integrand

$$\int \frac{2x^3 + 3x - 3}{(x+1)^3(x+2)^2} \, dx = -\frac{2x^2 + x + 1}{(x+1)^2(x+2)}$$

Structural observations: orders of poles

Rational integrand

$$\int \frac{2x^3 + 3x - 3}{(x+1)^3(x+2)^2} \, dx = -\frac{2x^2 + x + 1}{(x+1)^2(x+2)}$$

Elementary integrand

$$\int \frac{x \ln(x) - 1}{x(\ln(x) + 1)^2} dx = \frac{x + 1}{\ln(x) + 1}$$
$$\int \frac{xe^x + 1}{(e^x - x - 2)^2} dx = -\frac{x + 1}{e^x - x - 2}$$

Hermite reduction

Principle

- Consider squarefree factorization of denominator
- Use exponents of factors instead of orders of poles

Repeat the basic step

Splitting of the integrand

$$\int \frac{a}{u \cdot v^m} = \int \frac{b \cdot (1-m)Dv}{v^m} + \int \frac{c}{u \cdot v^{m-1}}$$

Integration by parts

$$\int b \cdot \frac{(1-m)Dv}{v^m} = \frac{b}{v^{m-1}} - \int \frac{Db}{v^{m-1}}$$

Exceptional cases

Special factors

$$\int \frac{(6x+1)e^{x}-4x}{(e^{x})^{2}(e^{x}-1)^{2}} dx = -\frac{2x+1}{(e^{x})^{2}(e^{x}-1)}$$

$$\int \frac{20x\tan(x)^{3}+1}{\tan(x)^{2}(\tan(x)^{2}+1)^{2}} = -\frac{5x\tan(x)+1}{\tan(x)(\tan(x)^{2}+1)^{2}}$$

Rational integrand

$$\int \frac{x+1}{(x+3)^2} \, dx = \frac{2}{x+3} + \ln(x+3)$$

Rational integrand

$$\int \frac{x+1}{(x+3)^2} dx = \frac{2}{x+3} + \ln(x+3)$$

$$\int \frac{2x^2 + 6x + 1}{(x^2+1)(3x^2 + 6x + 2)} dx = \arctan(x) + \frac{\arctan(\sqrt{3}(x+1))}{\sqrt{3}}$$

Rational integrand

$$\int \frac{x+1}{(x+3)^2} dx = \frac{2}{x+3} + \ln(x+3)$$

$$\int \frac{2x^2 + 6x + 1}{(x^2+1)(3x^2 + 6x + 2)} dx = \arctan(x) + \frac{\arctan(\sqrt{3}(x+1))}{\sqrt{3}}$$

Liouvillian integrand

$$\int \frac{\operatorname{li}(x)}{x^2} \, dx = \ln(\ln(x)) - \frac{\operatorname{li}(x)}{x}$$

Rational integrand

$$\int \frac{x+1}{(x+3)^2} dx = \frac{2}{x+3} + \ln(x+3)$$

$$\int \frac{2x^2 + 6x + 1}{(x^2+1)(3x^2 + 6x + 2)} dx = \arctan(x) + \frac{\arctan(x) + \frac{\arctan(\sqrt{3}(x+1))}{\sqrt{3}}$$

Liouvillian integrand

$$\int \frac{\operatorname{li}(x)}{x^2} \, dx = \ln(\ln(x)) - \frac{\operatorname{li}(x)}{x}$$

Complete elliptic integrals

$$\int \frac{xE(x)^2}{(1-x^2)(E(x)-K(x))^2} \, dx = \frac{E(x)}{E(x)-K(x)} - \ln(x)$$

General situation

Liouville's theorem

If $f \in F$ has an integral in an elementary extension of (F, D)

General situation

Liouville's theorem

If $f \in F$ has an integral in an elementary extension of (F, D), then there exist $c_1, \ldots, c_j \in \overline{\mathsf{Const}(F)}$ and $u_0, \ldots, u_j \in F(c_1, \ldots, c_j)$ s.t.

$$\int f = u_0 + \sum_{i=1}^j c_i \log(u_i)$$

General situation

Liouville's theorem

If $f \in F$ has an integral in an elementary extension of (F, D), then there exist $c_1, \ldots, c_j \in \overline{\mathsf{Const}(F)}$ and $u_0, \ldots, u_j \in F(c_1, \ldots, c_j)$ s.t.

$$\int f = u_0 + \sum_{i=1}^j c_i \log(u_i)$$

Algorithms to compute the c_i and u_i

- Lazard-Rioboo-Rothstein-Trager (based on subresultants)
- Czichowski (based on Gröbner bases)

Rational integrand

$$\int \frac{2x^2 + 6x + 1}{(x^2 + 1)(3x^2 + 6x + 2)} dx = \arctan(x) + \frac{\arctan(\sqrt{3}(x+1))}{\sqrt{3}}$$

Rational integrand

$$\int \frac{2x^2 + 6x + 1}{(x^2 + 1)(3x^2 + 6x + 2)} dx = \sum_{\alpha^4 + \frac{1}{6}\alpha^2 - \frac{1}{48} = 0} \alpha \ln\left(x + 3\alpha^2 + 2\alpha + \frac{3}{4}\right)$$

Rational integrand

$$\int \frac{2x^2 + 6x + 1}{(x^2 + 1)(3x^2 + 6x + 2)} dx = \sum_{\alpha^4 + \frac{1}{6}\alpha^2 - \frac{1}{48} = 0} \alpha \ln\left(x + 3\alpha^2 + 2\alpha + \frac{3}{4}\right)$$

Elementary integrand

$$\int \frac{x \tan(x)}{\tan(x) - x} dx = \ln(\tan(x) - x) - \frac{1}{2} \ln(\tan(x)^2 + 1)$$

Rational integrand

$$\int \frac{2x^2 + 6x + 1}{(x^2 + 1)(3x^2 + 6x + 2)} dx = \sum_{\alpha^4 + \frac{1}{6}\alpha^2 - \frac{1}{48} = 0} \alpha \ln\left(x + 3\alpha^2 + 2\alpha + \frac{3}{4}\right)$$

Elementary integrand

$$\int \frac{x \tan(x)}{\tan(x) - x} dx = \ln(\tan(x) - x) - \frac{1}{2} \ln(\tan(x)^2 + 1)$$

Bessel functions

$$\int \frac{1}{xJ_n(x)Y_n(x)} dx = \frac{\pi}{2} \ln \left(\frac{Y_n(x)}{J_n(x)} \right)$$

Polynomials in x

$$\int 6x^2 - 6x + 1 \, dx = 2x^3 - 3x^2 + x$$

Polynomials in x

$$\int 6x^2 - 6x + 1 \, dx = 2x^3 - 3x^2 + x$$

Polynomials in ln(x)

$$\int \frac{x+3}{x} \ln(x)^2 + \frac{3}{(x+1)^2} \ln(x) - \frac{x-2}{x+1} dx = \ln(x)^3 + x \ln(x)^2 - \frac{2x^2 - x}{x+1} \ln(x) + x$$

Polynomials in x

$$\int 6x^2 - 6x + 1 \, dx = 2x^3 - 3x^2 + x$$

Polynomials in ln(x)

$$\int \frac{x+3}{x} \ln(x)^2 + \frac{3}{(x+1)^2} \ln(x) - \frac{x-2}{x+1} dx = \ln(x)^3 + x \ln(x)^2 - \frac{2x^2 - x}{x+1} \ln(x) + x$$

Polynomials in e^x

$$\int x(e^x)^2 + \frac{x^2+1}{(x+1)^2}e^x dx = \frac{2x-1}{4}(e^x)^2 + \frac{x-1}{x+1}e^x$$

Polynomials in x

$$\int 6x^2 - 6x + 1 \, dx = 2x^3 - 3x^2 + x$$

Polynomials in ln(x)

$$\int \frac{x+3}{x} \ln(x)^2 + \frac{3}{(x+1)^2} \ln(x) - \frac{x-2}{x+1} dx = \ln(x)^3 + x \ln(x)^2 - \frac{2x^2 - x}{x+1} \ln(x) + x$$

Polynomials in e^x

$$\int x(e^{x})^{2} + \frac{x^{2}+1}{(x+1)^{2}}e^{x} dx = \frac{2x-1}{4}(e^{x})^{2} + \frac{x-1}{x+1}e^{x}$$

Polynomials in tan(x)

$$\int \frac{x}{x+1} \tan(x)^2 + \frac{1}{(x+1)^2} \tan(x) + \frac{x^2-2}{x+1} dx = \frac{x}{x+1} \tan(x) + \frac{x^2-4x}{2}$$

Basic principle

```
Given: monomial t over (K, D) with d := \deg(Dt) and f \in K[t] with n := \deg(f)
```

Basic principle

Given: monomial t over (K, D) with $d := \deg(Dt)$ and $f \in K[t]$ with $n := \deg(f)$

Ansatz:

$$g = \sum_{i=1}^{n+1-d} g_i t^i \in K[t]$$

Basic principle

Given: monomial t over (K, D) with $d := \deg(Dt)$ and $f \in K[t]$ with $n := \deg(f)$

Ansatz:

$$g = \sum_{i=1}^{n+1-d} g_i t^i \in \mathcal{K}[t]$$

② Compare coefficients of $t^{\max(d,1)}, \ldots, t^{n+\max(1-d,0)}$ in

$$Dg = f$$

Basic principle

Given: monomial t over (K, D) with $d := \deg(Dt)$ and $f \in K[t]$ with $n := \deg(f)$

Ansatz:

$$g = \sum_{i=1}^{n+1-d} g_i t^i \in \mathcal{K}[t]$$

② Compare coefficients of $t^{\max(d,1)}, \ldots, t^{n+\max(1-d,0)}$ in

$$Dg = f$$

- **3** Solve for coefficients $g_1, \ldots, g_{n+1-d} \in K$:
 - for $d \ge 2$ this is easy
 - for $d \leq 1$ this means solving differential equations in K

Recursive call

Question

When does $f \in K$ have an elementary integral over $(K(t_n), D)$? How to determine this by computing elementary integrals over (K, D) only?

Recursive call

Question

When does $f \in K$ have an elementary integral over $(K(t_n), D)$? How to determine this by computing elementary integrals over (K, D) only?

Answer

- refined versions of Liouville's theorem
- highly depends on t_n
- may introduce new integrands, e.g., determine if there exists a $c \in \mathsf{Const}(K)$ s.t.

$$f - c \cdot Dt \in k$$
 or $f - c \cdot \frac{Dt}{t} \in k$

has an elementary integral over (K, D).

Sample computation

Using the field $F = \mathbb{Q}(x, \ln(x), \frac{\ln(x)}{2})$ we compute

$$\int \frac{(x+1)^2}{x \ln(x)} + \operatorname{li}(x) \, dx =$$

Sample computation

Using the field $F = \mathbb{Q}(x, \ln(x), \ln(x))$ we compute

$$\int \frac{(x+1)^2}{x \ln(x)} + \operatorname{li}(x) \, dx = x \operatorname{li}(x) + \int \frac{2x+1}{x \ln(x)} \, dx$$

Sample computation

Using the field $F = \mathbb{Q}(x, \ln(x), \ln(x))$ we compute

$$\int \frac{(x+1)^2}{x \ln(x)} + \operatorname{li}(x) \, dx = x \operatorname{li}(x) + \int \frac{2x+1}{x \ln(x)} \, dx$$
$$= (x+c)\operatorname{li}(x) + \int \frac{2x+1}{x \ln(x)} - c \frac{1}{\ln(x)} \, dx$$

Sample computation

Using the field $F = \mathbb{Q}(x, \ln(x))$) we compute

$$\int \frac{(x+1)^2}{x \ln(x)} + \ln(x) \, dx = x \ln(x) + \int \frac{2x+1}{x \ln(x)} \, dx$$
$$= (x+c) \ln(x) + \int \frac{2x+1}{x \ln(x)} - c \frac{1}{\ln(x)} \, dx$$

Sample computation

Using the field $F = \mathbb{Q}(x, \ln(x), \ln(x))$ we compute

$$\int \frac{(x+1)^2}{x \ln(x)} + \text{li}(x) \, dx = x \ln(x) + \int \frac{2x+1}{x \ln(x)} \, dx$$
$$= (x+c) \ln(x) + \int \frac{2x+1}{x \ln(x)} - c \frac{1}{\ln(x)} \, dx$$
$$= (x+2) \ln(x) + \ln(\ln(x))$$

Application to definite integrals depending on parameters

Recall

Compute linear relation of integrals

Given
$$f_0(x), \ldots, f_m(x)$$
, find $g(x)$ and c_0, \ldots, c_m const. w.r.t. x s.t.
$$c_0 f_0(x) + \cdots + c_m f_m(x) = g'(x)$$

Recall

Compute linear relation of integrals

Given $f_0(x), \ldots, f_m(x)$, find g(x) and c_0, \ldots, c_m const. w.r.t. x s.t.

$$c_0f_0(x)+\cdots+c_mf_m(x)=g'(x)$$

Transfer this to a relation of corresponding integrals

$$c_0 \int_a^b f_0(x) dx + \cdots + c_m \int_a^b f_m(x) dx = g(b) - g(a)$$

Recall

Compute linear relation of integrals

Given $f_0(x), \ldots, f_m(x)$, find g(x) and c_0, \ldots, c_m const. w.r.t. x s.t.

$$c_0f_0(x)+\cdots+c_mf_m(x)=g'(x)$$

Transfer this to a relation of corresponding integrals

$$c_0 \int_a^b f_0(x) dx + \cdots + c_m \int_a^b f_m(x) dx = g(b) - g(a)$$

Choose the f_i

• For obtaining an ODE compute

$$c_0(y)f(x,y) + \cdots + c_m(y)\frac{\partial^m f}{\partial y^m}(x,y) = \frac{d}{dx}g(x,y)$$

• For obtaining a recurrence compute

$$c_0(n)f(x,n) + \cdots + c_m(n)f(x,n+m) = \frac{d}{dx}g(x,n)$$

$$I(n) := \int_0^1 e^{-2n\pi ix} \ln(\sin(\frac{\pi}{2}x)) dx$$
 for $n \in \mathbb{N}^+$

$$I(n) := \int_0^1 e^{-2n\pi ix} \ln(\sin(\frac{\pi}{2}x)) dx$$
 for $n \in \mathbb{N}^+$

Our algorithm finds

$$\begin{array}{l} f(n+1,x) - \frac{n}{n+1} f(n,x) = \\ \frac{d}{dx} \frac{e^{-2(n+1)\pi ix}}{2(n+1)\pi i} \left(\frac{1}{4(n+1)} + \frac{e^{\pi ix}}{2n+1} + \frac{e^{2\pi ix}}{4n} + \left(e^{2\pi ix} - 1 \right) \ln(\sin(\frac{\pi}{2}x)) \right) \end{array}$$

$$I(n) := \int_0^1 e^{-2n\pi ix} \ln(\sin(\frac{\pi}{2}x)) dx$$
 for $n \in \mathbb{N}^+$

Our algorithm finds

$$\begin{array}{l} f(n+1,x) - \frac{n}{n+1} f(n,x) = \\ \frac{d}{dx} \frac{e^{-2(n+1)\pi ix}}{2(n+1)\pi i} \left(\frac{1}{4(n+1)} + \frac{e^{\pi ix}}{2n+1} + \frac{e^{2\pi ix}}{4n} + (e^{2\pi ix} - 1) \ln(\sin(\frac{\pi}{2}x)) \right) \end{array}$$

Integrating over (0,1) yields the recurrence

$$I(n+1) - \frac{n}{n+1}I(n) = \frac{i}{(n+1)(2n+1)\pi}$$

$$I(n) := \int_0^1 e^{-2n\pi ix} \ln(\sin(\frac{\pi}{2}x)) dx$$
 for $n \in \mathbb{N}^+$

Our algorithm finds

$$\begin{array}{l} f(n+1,x) - \frac{n}{n+1} f(n,x) = \\ \frac{d}{dx} \frac{e^{-2(n+1)\pi ix}}{2(n+1)\pi i} \left(\frac{1}{4(n+1)} + \frac{e^{\pi ix}}{2n+1} + \frac{e^{2\pi ix}}{4n} + (e^{2\pi ix} - 1) \ln(\sin(\frac{\pi}{2}x)) \right) \end{array}$$

Integrating over (0,1) yields the recurrence

$$I(n+1) - \frac{n}{n+1}I(n) = \frac{i}{(n+1)(2n+1)\pi}$$

Initial value: $\int f(1,x) dx = \frac{e^{-\pi i x}}{2\pi i} + \frac{e^{-2\pi i x}}{8\pi i} - \frac{x}{4} + \frac{1 - e^{-2\pi i x}}{2\pi i} \ln(\sin(\frac{\pi}{2}x))$

$$I(n) := \int_0^1 e^{-2n\pi ix} \ln(\sin(\frac{\pi}{2}x)) dx$$
 for $n \in \mathbb{N}^+$

Our algorithm finds

$$\begin{array}{l} f(n+1,x) - \frac{n}{n+1} f(n,x) = \\ \frac{d}{dx} \frac{e^{-2(n+1)\pi ix}}{2(n+1)\pi i} \left(\frac{1}{4(n+1)} + \frac{e^{\pi ix}}{2n+1} + \frac{e^{2\pi ix}}{4n} + (e^{2\pi ix} - 1) \ln(\sin(\frac{\pi}{2}x)) \right) \end{array}$$

Integrating over (0,1) yields the recurrence

$$I(n+1) - \frac{n}{n+1}I(n) = \frac{i}{(n+1)(2n+1)\pi}$$

Initial value:

$$I(1)=-rac{1}{4}+rac{i}{\pi}$$

$$I(n) := \int_0^1 e^{-2n\pi ix} \ln(\sin(\frac{\pi}{2}x)) dx$$
 for $n \in \mathbb{N}^+$

Our algorithm finds

$$\begin{array}{l} f(n+1,x) - \frac{n}{n+1} f(n,x) = \\ \frac{d}{dx} \frac{e^{-2(n+1)\pi ix}}{2(n+1)\pi i} \left(\frac{1}{4(n+1)} + \frac{e^{\pi ix}}{2n+1} + \frac{e^{2\pi ix}}{4n} + (e^{2\pi ix} - 1) \ln(\sin(\frac{\pi}{2}x)) \right) \end{array}$$

Integrating over (0,1) yields the recurrence

$$I(n+1) - \frac{n}{n+1}I(n) = \frac{i}{(n+1)(2n+1)\pi}$$

Initial value:

$$I(1) = -\frac{1}{4} + \frac{i}{\pi}$$

Solution:

$$I(n) = -\frac{1}{4n} + \frac{i}{n\pi} \sum_{k=1}^{n} \frac{1}{2k-1}$$

$$c_{m,n} = \int_{-1}^{1} C_m^{\mu}(x) C_n^{\nu}(x) (1-x^2)^{\nu-\frac{1}{2}} dx$$
 for $m, m \in \mathbb{N}$, $\mu, \nu > -\frac{1}{2}$

$$c_{m,n} = \int_{-1}^{1} C_{m}^{\mu}(x) C_{n}^{\nu}(x) (1-x^{2})^{\nu-\frac{1}{2}} dx$$
 for $m, m \in \mathbb{N}$, $\mu, \nu > -\frac{1}{2}$

Our algorithm finds

$$c_{m,n+1} = \frac{(m-n+1)(2\nu+n)}{(n+1)(2(\mu-\nu)+m-n-1)}c_{m+1,n}$$

$$c_{m+2,n} = \frac{(2\mu+m+n)(2(\mu-\nu)+m-n)}{(m-n+2)(2\nu+m+n+2)}c_{m,n}$$

$$c_{m,n} = \int_{-1}^{1} C_{m}^{\mu}(x) C_{n}^{\nu}(x) (1-x^{2})^{\nu-\frac{1}{2}} dx$$
 for $m, m \in \mathbb{N}, \ \mu, \nu > -\frac{1}{2}$

Our algorithm finds

$$c_{m,n+1} = \frac{(m-n+1)(2\nu+n)}{(n+1)(2(\mu-\nu)+m-n-1)}c_{m+1,n}$$

$$c_{m+2,n} = \frac{(2\mu+m+n)(2(\mu-\nu)+m-n)}{(m-n+2)(2\nu+m+n+2)}c_{m,n}$$

Initial values: $c_{0,0} = B(\frac{1}{2}, \nu + \frac{1}{2}), c_{1,0} = 0$

$$c_{m,n} = \int_{-1}^{1} C_m^{\mu}(x) C_n^{\nu}(x) (1-x^2)^{\nu-\frac{1}{2}} dx$$
 for $m, m \in \mathbb{N}, \ \mu, \nu > -\frac{1}{2}$

Our algorithm finds

$$c_{m,n+1} = \frac{(m-n+1)(2\nu+n)}{(n+1)(2(\mu-\nu)+m-n-1)}c_{m+1,n}$$

$$c_{m+2,n} = \frac{(2\mu+m+n)(2(\mu-\nu)+m-n)}{(m-n+2)(2\nu+m+n+2)}c_{m,n}$$

Initial values: $c_{0,0} = B(\frac{1}{2}, \nu + \frac{1}{2}), c_{1,0} = 0$

Solution:

$$c_{m,n} = \begin{cases} B(\frac{1}{2}, \nu + \frac{1}{2}) \frac{(\mu)_k (\mu - \nu)_{k-n} (2\nu)_n}{n!(k-n)!(\nu+1)_k} & \text{if } m+n=2k\\ 0 & \text{if } m+n=2k+1 \end{cases}$$

