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@ Introduction to symbolic integration
@ Relevant classes of functions and Risch's algorithm

© Basics of differential fields

@ A generalization of Risch's algorithm
@ Introduction
@ Inside the algorithm

© Application to definite integrals depending on parameters
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Introduction to symbolic integration
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Symbolic integration

Computer algebra

© Model the functions by algebraic structures
@ Computations in the algebraic framework

© Interpret result in terms of functions
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© Model the functions by algebraic structures
@ Computations in the algebraic framework

© Interpret result in terms of functions

Different approaches and structures

o Differential algebra: differential fields
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Symbolic integration

Computer algebra

© Model the functions by algebraic structures
@ Computations in the algebraic framework

© Interpret result in terms of functions

Different approaches and structures

o Differential algebra: differential fields

@ Holonomic systems: Ore algebras
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Symbolic integration

Computer algebra

© Model the functions by algebraic structures
@ Computations in the algebraic framework

© Interpret result in terms of functions

Different approaches and structures

o Differential algebra: differential fields
Holonomic systems: Ore algebras

°
@ Rule-based: expressions, tables of transformation rules
°
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Indefinite integration

Antiderivatives

/f(x) dx = g(x)
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Indefinite integration

Antiderivatives

i3(x) — xLiz(x x (1 — )2
/L3((i_x|)-22( )dx - 1_X(Li3(x)—Li2(x))+|(1)

/ A(x2dx = L(xAT(x)? + 2A()A (x) — X2Ai(x)?)

[mvm® = (i)
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Definite integration

Integrals depending on parameters

b
/ f(x,y)dx =g(y)
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Definite integration

Integrals depending on parameters

/0 exzizdx = Lix(2)
< 10
SX d = — =
/0 e "(a,x) dx s(s+1)?
1 , 1 i\~ 1
—2nTix in( T = == -
fy e mtan e =~ DY
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Example: Gamma function

Mz):= / x> Le™dx forz>0
0 N
=:f(z,x)

We compute

zf(z,x) — f(z+1,x) = dixze x
Ix
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Example: Gamma function

Mz):= / x> Le™dx forz>0
0 N
=:f(z,x)

We compute
f(z,x)— f(z+1,x) dxze‘x
—f(z X) = —
zf(z, x , dx

After integrating from 0 to oo we obtain

z/ f(z,x)dx—/ f(z+1,x)dx = x*e™ >o<0:o
0 0
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Example: Gamma function

Mz):= / x> Le™dx forz>0
0 N
=:f(z,x)

We compute
zf(z,x) — f(z+1,x) = ixze_x
9 9 dX
After integrating from 0 to oo we obtain
oo o0
z/o f(z,x)dx—/O f(z+1,x)dx = x*e™* zO:O
In other words, we proved

zZM[(z)-T(z+1)=0
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Linear Relations

Integrals depending on one parameter

o co(y)f(x, )+ + cm(y) Gt (x,¥) = ZLa(x,y)
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Linear Relations

Integrals depending on one parameter

° CO(.y)f(Xay) + o+ Cm()/)%(x7y) = %g(xay)
yields an ODE for

b
1(y) :_/ f(x,y)dx
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Linear Relations

Integrals depending on one parameter

° CO(.y)f(Xay) + o+ Cm()/)%(x7y) = %g(xay)
yields an ODE for

b
1(y) :_/ f(x,y)dx

o co(n)f(x,n)+ -+ cm(n)f(x,n+ m) = %g(x, n)
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Linear Relations

Integrals depending on one parameter

° CO(.y)f(Xay) + o+ Cm()/)%(x7y) = %g(xay)
yields an ODE for

b
1(y) :_/ f(x,y)dx

o co(n)f(x,n)+ -+ cm(n)f(x,n+ m) = %g(x, n)
yields a recurrence for

I(n) == /abf(x, n)dx
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Parametric integration

Compute linear relation of integrals

Given f (x) , find g(x) s.t.
f (%) =g'(x)
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Parametric integration

Compute linear relation of integrals

Given fo(x), ..., fm(x), find g(x) s.t.
F(x) —g'(x)
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Parametric integration

Compute linear relation of integrals

Given fo(x), ..., fm(x), find g(x) and ¢, ..., cm const. w.r.t. x s.t.
f (%) =g'(x)
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Parametric integration

Compute linear relation of integrals

Given fo(x), ..., fm(x), find g(x) and ¢, ..., cm const. w.r.t. x s.t.

cofo(x) + -+ + cmfm(x) = g'(x)
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Parametric integration

Compute linear relation of integrals

Given fo(x), ..., fm(x), find g(x) and ¢, ..., cm const. w.r.t. x s.t.
cofo(x) + -+ + cmfm(x) = &'(x)

Transfer this to a relation of corresponding integrals

coffo Ydx + - +cmff Ydx = g(b) — g(a)
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Parametric integration
Compute linear relation of integrals

Given fo(x), ..., fm(x), find g(x) and ¢, ..., cm const. w.r.t. x s.t.
cofo(x) + -+ + cmfm(x) = &'(x)

Transfer this to a relation of corresponding integrals
b

co [fo(x)dx + -+ cm f fm(x)dx = g(b) — g(a)

a

Certificate

b b
co [fo(x)dx + -+ cm [ fn(x)dx = r
a

a
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Parametric integration
Compute linear relation of integrals

Given fo(x), ..., fm(x), find g(x) and ¢, ..., cm const. w.r.t. x s.t.
cofo(x) + -+ + cmfm(x) = &'(x)

Transfer this to a relation of corresponding integrals
b b
co [ fo(x)dx + -+ cm [ fm(x)dx = g(b) — g(a)
a

a

Certificate

g(x) is a certificate for the relation
b b
co [fo(x)dx + -+ cm [ f(x)dx = r
a a

It is easy to verify

cofo(x) + -+ - + cmfm(x) = g'(x) and r=g(b)—g(a)

Clemens G. Raab (RISC) Generalization of Risch's Algorithm to Special Functions



Relevant classes of functions and
Risch's algorithm
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Elementary functions

Characterization

Functions constructed from rational functions by

@ basic arithmetic operations +, —, *, /
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Elementary functions

Characterization

Functions constructed from rational functions by

@ basic arithmetic operations +, —, *, /

@ taking solutions of algebraic equations
y(x)" + am-1(x)y(x)™ + -+ ao(x) =0
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Elementary functions

Characterization

Functions constructed from rational functions by

@ basic arithmetic operations +, —, *, /

@ taking solutions of algebraic equations
y(x)" + am-1(x)y(x)™ + -+ ao(x) =0

e taking logarithms y(x) = log(a(x))
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Elementary functions

Characterization

Functions constructed from rational functions by

@ basic arithmetic operations +, —, *, /

@ taking solutions of algebraic equations
y(x)" + am-1(x)y(x)™ + -+ ao(x) =0

e taking logarithms y(x) = log(a(x))

e taking exponentials y(x) = exp(a(x))
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Elementary functions
Characterization

Functions constructed from rational functions by
@ basic arithmetic operations +, —, *, /
@ taking solutions of algebraic equations
y(x)" + am-1(x)y(x)™ + -+ ao(x) =0
e taking logarithms y(x) = log(a(x))

e taking exponentials y(x) = exp(a(x))

algebraic functions, logarithms, ¢*, x€, trigonometric/hyperbolic
functions and their inverses, ...

In(x + 3) — 4x arctan(tanh(%))
exp(exp(x) — 1)y/cos(2x) x*In(x) tan(x)
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Elementary integrals of elementary functions

@ Given an elementary function f(x)

@ Decide whether there is an elementary function g(x) with
g'(x) = f(x) and compute such a g(x) if it exists
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Elementary integrals of elementary functions

@ Given an elementary function f(x)

@ Decide whether there is an elementary function g(x) with
g'(x) = f(x) and compute such a g(x) if it exists

Algorithm
Risch 1969, Bronstein 1990
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Elementary integrals of elementary functions

@ Given an elementary function f(x)

@ Decide whether there is an elementary function g(x) with
g'(x) = f(x) and compute such a g(x) if it exists

Algorithm
Risch 1969, Bronstein 1990

Lo Y2 o[ 2=V2
/X2—2 T 08 x+2

/exp(x2) dx is not elementary
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/x4+2x3—x2+3
(x+1)(x+2)?

X =
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/x4+2x3—x2+3
(x+1)(x+2)?

X =

Split numerator a(x) = x* 4+ 2x3 — x2 + 3 of integrand
a(x) = b(x) - (=(x +1)) + c(x) - (x +2).

By EEA we compute

Clemens G. Raab (RISC) Generalization of Risch's Algorithm to Special Functions



/x4+2x3—x2+3
(x+1)(x+2)?

X =

Split numerator a(x) = x* 4+ 2x3 — x2 + 3 of integrand
a(x) = b(x) - (=(x +1)) + c(x) - (x +2).

By EEA we compute

So

x*+2x3 - x2+3 _ b(x) c(x) — (x+1)b'(x)
/(x+1)(x+2)2 I = x+2+/ il t2)

_ 1 +/ x> —x+1 e
 x+2 (x+1)(x+2)
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Example (cont.)

x3—x+1
/<x+1xx+z>dX‘?
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Example (cont.)
3 _
/ X x+l
(x+1)(x +2)
For determining the residues we compute the Grébner basis of

{a(x) — 2b/(x), b(x)}

3

w.r.t. z < x with numerator a(x) = x> — x + 1 and denominator

b(x) = (x+1)(x +2):

{(z=1)(z-5),x+ %z—f— %}
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Example (cont.)

x3—x+1
/<x+1xx+z>dX‘?

For determining the residues we compute the Grébner basis of

{a(x) — 2b/(x), b(x)}

3

w.r.t. z < x with numerator a(x) = x> — x + 1 and denominator

b(x) = (x+1)(x +2):
{(z=1)(z—=5),x+ %Z + %}

So with the residues z=1and z=5

C ol L3 5.3
D g X INOE DS InGe G ) [ x-3dx
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Example (cont.)

/X—3dX:?
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Example (cont.)

/X—3dx:?

Ansatz:
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Example (cont.)
/X—3dx: ?

Ansatz:

Comparing coefficients leads to

82:% 31:—3.

Altogether, we obtained

x4+ 2x3 - x24+3 1
dx = ———+1 1)+51 2)+1ix2-3
/ T Dt 2? X x+2+ n(x+1)+5In(x4+2)+5x"—3x
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Liouvillian functions

Characterization

Functions constructed from rational functions by

@ basic arithmetic operations +, —, *, /

@ taking solutions of algebraic equations
y)™ + am-1(x)y(x)™ "t + - + a0(x) = 0

e taking antiderivatives y'(x) = a(x)

e taking exponentials y(x) = exp(a(x))
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Liouvillian functions
Characterization

Functions constructed from rational functions by
@ basic arithmetic operations +, —, *, /
@ taking solutions of algebraic equations
y)™ + am-1(x)y(x)™ "t + - + a0(x) = 0
e taking antiderivatives y'(x) = a(x)

e taking exponentials y(x) = exp(a(x))

elementary functions, exponential integrals, polylogarithms, error
functions, Fresnel integrals, incomplete gamma function, ...

Ei(2In(x)) Lio(e) e (Zerfi(x) — LEi(x?))

X
2
/ cos(5u”)(C(u) + %)(S(U) — %) du
—00
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Generalization

Characterization

Functions constructed from rational functions by

@ basic arithmetic operations +, —, *, /

@ taking solutions of algebraic equations
y()" + am-1(x)y(x)™ + - + ao(x) = 0
@ taking solutions of 2-dimensioinal differential systems

) (el e i) . ()

Clemens G. Raab (RISC) Generalization of Risch's Algorithm to Special Functions



Generalization
Characterization

Functions constructed from rational functions by
@ basic arithmetic operations +, —, *, /
@ taking solutions of algebraic equations
y)™ + am-1(x)y(x)™ "t + - + a0(x) = 0
@ taking solutions of 2-dimensioinal differential systems

) (el e i) . ()

Liouvillian functions, orthogonal polynomials, associated Legendre
functions, complete elliptic integrals, Airy/Scorer functions,

Bessel /Struve/Anger/Weber /Lommel/Kelvin functions, Whittaker
functions, hypergeometric functions, Heun functions, Mathieu
functions, . ..
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Basics of differential fields
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Differential algebra

Differential field

(F, D) such that for any f,g € F

D(f +g) = Df + Dg and D(fg) = (Df)g + f(Dg)
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Differential algebra

Differential field

(F, D) such that for any f,g € F
D(f +g)=Df + Dg and D(fg)= (Df)g+ f(Dg)

Constant field: Const(F) := {c € F | Dc =0}
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Differential algebra
Differential field

(F, D) such that for any f,g € F

D(f +g) = Df + Dg and  D(fg) = (Df)g + f(Dg)
Constant field: Const(F) := {c € F | Dc = 0}
(Qx), &) (Q(e¥), &) (R(n,x, X", In(x)), 4)

(C(nv X, JH(X)7 Jn+1(X)7 YH(X)7 Yn+1(X)), %)
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Differential algebra
Differential field

(F, D) such that for any f,g € F

D(f +g) = Df + Dg and D(fg) = (Df)g + f(Dg)

Constant field: Const(F) := {c € F | Dc =0}

Examples
(Q(x), 4) (Q(e¥), &) (R(n,x, X", In(x)), 4)

(C(nv X, JH(X)7 Jn+1(X)7 YH(X)7 Yn+1(X)), %)

f(x),g() €F = £(x)+e(x), F(x)g(x), L3, F(x) € F,

but f(x)8™), f(g(x)), and [ f(x) dx in general are not in F
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Differential field extensions

Adjoin new elements

To a differential field (F, D) we can adjoin new elements ti,...,t,
to get a field F(t1,..., tn).
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Differential field extensions

Adjoin new elements

To a differential field (F, D) we can adjoin new elements ti,...,t,
to get a field F(t1,..., tn).
The result is a differential field extension of (F, D) if

e Dtj € F(t1,...,t,) and

@ D can be extended consistently to F(t1,. .., ty).
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Monomial extensions

Definition

t is a monomial over (F, D) if
@ t is transcendental over F and

@ Dt is a polynomial in t with coefficients from F
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Monomial extensions

Definition

t is a monomial over (F, D) if
@ t is transcendental over F and

@ Dt is a polynomial in t with coefficients from F

Examples

In(x), exp(x),tan(x) are monomials over (Q(x), %):

° d%ln(x) :%

o 2 exp(x) = exp(x)
o L tan(x) = tan(x)? + 1
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Monomial extensions

Definition

t is a monomial over (F, D) if
@ t is transcendental over F and
@ Dt is a polynomial in t with coefficients from F

In(x), exp( ), tan(x) are monomials over (Q(x), dX)
E In(x) =1
° d% exp(x) = exp(x)
< tan(x) = tan(x)? + 1

Towers of monomial extensions
We consider differential fields (C(t1, ..., ty), D) such that
each t; is a monomial over (C(ty,...,ti_1),D).
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Elementary extensions

Elementary extension

Any (E, D) generated from (F, D) by adjoining
@ algebraics: y(x)™ 4+ am_1(x)y(x)™ 1 4+ 4+ ag(x) =0
@ logarithms: y(x) = log(a(x))

@ exponentials: y(x) = exp(a(x))
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Elementary extensions

Elementary extension

Any (E, D) generated from (F, D) by adjoining
@ algebraics: y(x)™ 4+ am_1(x)y(x)™ 1 4+ 4+ ag(x) =0
@ logarithms: y(x) = log(a(x))

@ exponentials: y(x) = exp(a(x))

The definition is relative to F. An elementary extension E contains
non-elementary functions if F does.
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A generalization of Risch's algorithm

Introduction
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Parametric elementary integration

e Given (F,D) and fy,...,fm € F
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Parametric elementary integration

e Given (F,D) and fy,...,fm € F
e Find all ¢,...,cm € Const(F) s.t.

Gofy+ -+ + G

has an elementary integral over (F, D)
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Parametric elementary integration

e Given (F,D) and fy,...,fm € F
e Find all ¢,...,cm € Const(F) s.t.

COﬂJ"_""f‘Cmfm:Dg

has an elementary integral over (F, D) and compute such g

y
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Parametric elementary integration

e Given (F,D) and fy,...,fm € F
e Find all ¢,...,cm € Const(F) s.t.

COﬂJ"_""f‘Cmfm:Dg

has an elementary integral over (F, D) and compute such g

We say that f € F has an elementary integral over (F, D)
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Parametric elementary integration

e Given (F,D) and fy,...,fm € F
e Find all ¢,...,cm € Const(F) s.t.

COﬂJ"_""f‘Cmfm:Dg
has an elementary integral over (F, D) and compute such g

We say that f € F has an elementary integral over (F, D) if there
exists an elementary extension (E, D) of (F,D) and g € E s.t.

Dg=f
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Parametric elementary integration

e Given (F,D) and fy,...,fm € F
e Find all ¢,...,cm € Const(F) s.t.

COﬂJ"_""f‘Cmfm:Dg

has an elementary integral over (F, D) and compute such g

We say that f € F has an elementary integral over (F, D) if there
exists an elementary extension (E, D) of (F,D) and g € E s.t.

Dg=f

The definition is relative to F. The integral g need not be an
elementary function.
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Admissible integrands

Admissible differential fields

We call a tower of monomial extensions
(F,D) = (C(t1,...,tn), D) admissible, if Const(F) = C and
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Admissible integrands

We call a tower of monomial extensions
(F,D) = (C(t1,...,tn), D) admissible, if Const(F) = C and
for each t; and F;_1 := C(t1,...,ti—1) either
@ t; is a Liouvillian monomial over F;_1, i.e., either
® Dt; € Fi_; (primitive), or
(] Dtl_t" € F;_1 (hyperexponential); or
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Admissible integrands

We call a tower of monomial extensions
(F,D) = (C(t1,...,tn), D) admissible, if Const(F) = C and
for each t; and F;_1 := C(t1,...,ti—1) either
@ t; is a Liouvillian monomial over F;_1, i.e., either
® Dt; € Fi_; (primitive), or
(] Dtt € F;_1 (hyperexponential); or
@ there is a g € F;_1[t;] with deg(q) > 2 such that
® Dt; = q(t;) and L
® Dy = q(y) does not have a solution y € F;_;.
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Admissible integrands

Admissible differential fields

We call a tower of monomial extensions
(F,D) = (C(t1,...,tn), D) admissible, if Const(F) = C and
for each t; and F;_1 := C(t1,...,ti—1) either
@ t; is a Liouvillian monomial over F;_1, i.e., either
® Dt; € Fi_; (primitive), or
(] Dtl_t" € F;_1 (hyperexponential); or
@ there is a g € F;_1[t;] with deg(g) > 2 such that
® Dt; = q(t;) and L
® Dy = q(y) does not have a solution y € F;_;.

In a tower of monomial extensions all generators t; are algebraically
independent over C.
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Risch 1969, Mack 1976

complete algorithm for regular elementary (F, D)

Singer et al. 1985

complete algorithm for regular Liouvillian (F, D)

Bronstein 1990, 1997

partial results for (F, D) a tower of monomial extensions

complete algorithm for (F, D) a tower of monomial extensions
subject to some technical conditions
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A generalization of Risch’s algorithm

Inside the algorithm
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Decision procedure

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only
@ integrands from K(t,) = C(t1,...,tn)
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Decision procedure

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only
@ integrands from K(t,) = C(t1,...,tn)
@ compute parts of the integral involving t,
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Decision procedure

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only
@ integrands from K(t,) = C(t1,...,tn)
@ compute parts of the integral involving t,

© subtract its derivative = remaining integrands are from
K= C(tl, 0000 tn—l)
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Decision procedure

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only
@ integrands from K(t,) = C(t1,...,tn)

@ compute parts of the integral involving t,

© subtract its derivative = remaining integrands are from
K= C(tl, 0000 tn—l)

© proceed recursively with the smaller tower
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Decision procedure

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only
@ integrands from K(t,) = C(t1,...,tn)
@ compute parts of the integral involving t,

© subtract its derivative = remaining integrands are from
K= C(tl, 0000 tn—l)

© proceed recursively with the smaller tower

At each level

© Hermite Reduction for reducing denominator
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Decision procedure

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only
@ integrands from K(t,) = C(t1,...,tn)
@ compute parts of the integral involving t,

© subtract its derivative = remaining integrands are from
K= C(tl, 0000 tn—l)

© proceed recursively with the smaller tower

At each level

© Hermite Reduction for reducing denominator

@ Residue Criterion for computing elementary extensions
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Decision procedure

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only
@ integrands from K(t,) = C(t1,...,tn)
@ compute parts of the integral involving t,

© subtract its derivative = remaining integrands are from
K= C(tl, 0000 tn—l)

© proceed recursively with the smaller tower

At each level

© Hermite Reduction for reducing denominator

@ Residue Criterion for computing elementary extensions

© Treat reduced integrands by solving auxiliary problems in K
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Decision procedure

Recursive reduction algorithm

Exploit tower structure: focus on topmost generator only
@ integrands from K(t,) = C(t1,...,tn)
@ compute parts of the integral involving t,

© subtract its derivative = remaining integrands are from
K= C(tl, 0000 tn—l)
© proceed recursively with the smaller tower

At each level

© Hermite Reduction for reducing denominator

@ Residue Criterion for computing elementary extensions
© Treat reduced integrands by solving auxiliary problems in K

@ remaining integrands are from K, reduce elementary
integration over K(t,) to elementary integration over K
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Structural observations: orders of poles

Rational integrand

/ 2x3 +3x—3 2x2 + x+1
(

7=

x+1)3(x + 2) (x+1)?(x+2)

Clemens G. Raab (RISC) Generalization of Risch's Algorithm to Special Functions



Structural observations: orders of poles

Rational integrand

/ 2x3 +3x—3 2x2 + x+1

R N = =

(T 13(x + 2) (T 12(x + 2)

Elementary integrand

/xln(x)—l b — x+1

x(In(x) 4+ 1)2 In(x)+1
/ xe* +1 dx = Xt 1
(ex — x —2)? T X —x-2

Clemens G. Raab (RISC) Generalization of Risch's Algorithm to Special Functions



Hermite reduction

@ Consider squarefree factorization of denominator

@ Use exponents of factors instead of orders of poles

Repeat the basic step

@ Splitting of the integrand

/ a /b-(lm)Dv / c
m m + m—1
u-v 1’4 u-v

@ Integration by parts
/ (1—m)Dv b / Db
b: m = o m—1 m—1
v v v
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Exceptional cases

Special factors

(6x+1)ex—4xd B 2x +1
[ e - e
20x tan(x)3 +1 B 5xtan(x) +1
/ tan(x)2(tan(x)2 +1)2 ~  tan(x)(tan(x)2 + 1)2
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Structural observations: new functions

Rational integrand

x+1 2
—dx = —— +| 3
/(x—|—3)2 x x+3+n(XJr )
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Structural observations: new functions

Rational integrand

x+1 2
ox+1 | ;
/(x+3)2dx 3 T Inlx+3)
2x% + 6x + 1 arCtanh(\/g(X oy
/ DB+ ex 2 o~ et e
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Structural observations: new functions

Rational integrand

x+1 2
——dx = I 3
/(x—|—3)2 x x—|—3+ L
2x% 4 6x + 1 arctanh(v/3(x + 1)
dx = t +
/(x2 TG 1 6x12) Ix arctan(x) 7 J

Liouvillian integrand

/ “)((’;) dx = In(In(x)) — 1)
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Structural observations: new functions

Rational integrand

x+1 2
——dx = I 3
/(x—|—3)2 x x—|—3+ n(x+3)
2x% 4 6x + 1 arctanh(v/3(x + 1)
dx = t
/(x2 TG 1 6x12) Ix arctan(x) + 7

Liouvillian integrand

xE(x)? B e
| e —rear = B ke ")
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General situation

Liouville’s theorem

If f € F has an integral in an elementary extension of (F, D)
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General situation

Liouville’s theorem

If f € F has an integral in an elementary extension of (F, D), then
there exist cy, ..., ¢ € Const(F) and wg, ..., uj € F(ct,...,¢) s.t.

J
/f = ug + Z Ci Iog(u,-)
i=1
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General situation

Liouville’s theorem

If f € F has an integral in an elementary extension of (F, D), then
there exist cy, ..., ¢ € Const(F) and wg, ..., uj € F(ct,...,¢) s.t.
J
/f = ug + ZC,' Iog(u,-)
i=1

Algorithms to compute the ¢; and u;

@ Lazard-Rioboo-Rothstein-Trager (based on subresultants)

@ Czichowski (based on Grdbner bases)
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Rational integrand

2x% 4+ 6x + 1 arctanh(v/3(x + 1))
dx = arct
/ 2T )G 1 6x 7 2) x = arctan(x) + 7
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Rational integrand

2x2 +6x + 1 5 .
/(X2+1)(3x2+6x+2)dx_ 2 olnGor3att2a)

4, 1.2 1 _
at+zaf— =0
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Rational integrand

2x2 +6x + 1 5 .
/(X2+1)(3x2+6x+2)dx_ 2 olnGor3att2a)

4, 1.2 1 _
at+zaf— =0

Elementary integrand

Ln(x)x:n an(x) — x) — L In(tan(x)?
/tan(x)_xd In(tan(x) - x) =  In(tan(x)? + 1)
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B

Rational integrand

2x2 +6x + 1 5 .
dx = aln(x + 30 +2a + 2
/(X2+1)(3x2+6x+2) * 1; 1, ( )

441 o 1 _
a’+g 8=

Elementary integrand

Ln(x)x:n an(x) — x) — L In(tan(x)?
/tan(x)_xd In(tan(x) - x) =  In(tan(x)? + 1)

Bessel functions
[ v ™=
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Structural observations: polynomial degree

Polynomials in x

/6X2—6x—|—ldx—2x3—3x2—i—x
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Structural observations: polynomial degree

Polynomials in x

/6X2—6x—|—ldx—2x3—3x2—i—x

Polynomials in In(x)

/ 53 In(x)*+ (i () =153 dx = In(x)>+x In(x)* = 253 In(x) $x

.
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Structural observations: polynomial degree
Polynomials in x

/6X2—6x—|—ldx—2x3—3x2—i—x

Polynomials in In(x)

2

/ X2 In(x)*+ iz () =352 dx = In(x)*+x In(x)? =B In(x)fx

”
Polynomials in e*

/x(ex)2 I+ (ijj:)lz e dx = 2FL(X)? + Xl

N
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Structural observations: polynomial degree
Polynomials in x

/6X2—6x—|—ldx—2x3—3x2—i—x

Polynomials in In(x)

/ 53 In(x)*+ (i () =153 dx = In(x)>+x In(x)* = 253 In(x) $x

”
Polynomials in e*

[ + e ax = B 4 ke

Polynomials in tan(x)

2_ 2
/XXHtan(x)2 + ﬁtan(x) + XX“? dx = %Htan(x) + %

A
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Algorithm

Basic principle

Given: monomial t over (K, D) with d := deg(Dt)
and f € K[t] with n:= deg(f)

Clemens G. Raab (RISC) Generalization of Risch's Algorithm to Special Functions



Algorithm

Basic principle

Given: monomial t over (K, D) with d := deg(Dt)
and f € K[t] with n:= deg(f)
O Ansatz:

n+1—d )
g= > &t €Kt
i=1
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Algorithm

Basic principle

Given: monomial t over (K, D) with d := deg(Dt)
and f € K[t] with n:= deg(f)

@ Ansatz:
n+1—d .
g= Y &t €Kl
i=1
@ Compare coefficients of tmax(d:1) ¢ntmax(1-d.0) i

Dg=f
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Algorithm

Basic principle

Given: monomial t over (K, D) with d := deg(Dt)
and f € K[t] with n:= deg(f)

@ Ansatz:
n+1—d .
g= Y &t €Kl
i=1
@ Compare coefficients of tmax(d:1) ¢ntmax(1-d.0) i

Dg=f

© Solve for coefficients g1,...,8p11-4 € K:

o for d > 2 this is easy
e for d < 1 this means solving differential equations in K
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Recursive call

When does f € K have an elementary integral over (K(t,), D)?
How to determine this by computing elementary integrals over
(K, D) only?
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Recursive call

When does f € K have an elementary integral over (K(t,), D)?
How to determine this by computing elementary integrals over
(K, D) only?

Answer

@ refined versions of Liouville's theorem
@ highly depends on t,

@ may introduce new integrands, e.g., determine if there exists a
¢ € Const(K) s.t.

f—cDtek or f—c-%ek

has an elementary integral over (K, D).
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Sample computation

Using the field F = Q(x, In(x),li(x)) we compute

/(X—i_l)2 +1li(x)dx =

x In(x)
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Sample computation

Using the field F = Q(x, In(x),li(x)) we compute

/()(—1—1)2+li(x)dx = xli(x)+/2x+1dx

x In(x) x In(x)
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Sample computation

Using the field F = Q(x, In(x),li(x)) we compute

x In(x) x In(x)
= (x+ o)li(x) + )2<)I<n—é_x1) Ingx) dx
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Sample computation

Using the field F = Q(x, In(x) ) we compute

/(X+1)2+li(x)dx = Xli(x)+/2x+1dx

x In(x) x In(x)
= (x+ o)li(x) + )2<)I<n—é_x1) Ingx) dx
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Sample computation

Using the field F = Q(x, In(x),li(x)) we compute

x In(x) x In(x)
= (x+ 2)li(x) + In(In(x))
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Application to definite integrals
depending on parameters
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Recall

Compute linear relation of integrals

Given fy(x), ..., fm(x), find g(x) and cp, ..., cm const. w.r.t. x s.t.

cofo(x) + -+ + cmfm(x) = g'(x)
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Recall

Compute linear relation of integrals

Given fy(x), ..., fm(x), find g(x) and cp, ..., cm const. w.r.t. x s.t.
cofo(x) + -+ + cmfm(x) = g'(x)

Transfer this to a relation of corresponding integrals

coffo Ydx + - +cmff Ydx = g(b) — g(a)
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Recall
Compute linear relation of integrals

Given fy(x), ..., fm(x), find g(x) and cp, ..., cm const. w.r.t. x s.t.
cofo(x) + -+ + cmfm(x) = g'(x)

Transfer this to a relation of corresponding integrals

cofﬁ)(x)dx—i— -+ cmff Ydx = g(b) — g(a)

a

Choose the f;

@ For obtaining an ODE compute

@(y)f(x,y) + -+ em(y) G (x,¥) = 528(x,¥)

@ For obtaining a recurrence compute

co(mf(x,n)+ -+ cm(n)f(x,n+ m) = d%g(x, n)
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1
1(n) = e 2" X |n(sin(Zx))dx for n € Nt
; 2
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1
1(n) = e 2" X |n(sin(Zx))dx for n € Nt
; 2

Our algorithm finds

f(n+1,x)— nilf(n,x) =
d e—2ntl)mix

1 TTiX 27 ix 2 .
dx 2(n+1)7i <4(n+1) + 2en+1 + S +(e77 1) 'n(s'n(%X)))
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1
1(n) = e 2" X |n(sin(Zx))dx for n € Nt
; 2

Our algorithm finds

f(n+1,x)— nilf(n,x) =
d e—2ntl)mix

1 TTiX 27 ix 2 .
dx 2(n+1)7i <4(n+1) + 2en+1 + S +(e77 1) 'n(s'n(%X)))

Integrating over (0, 1) yields the recurrence

I(n+1) = 2271(0) = Grnydrys
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1
1(n) = e 2" X |n(sin(Zx))dx for n € Nt
; 2

Our algorithm finds

f(n+1,x)— nilf(n,x) =
d e—2ntl)mix

1 TTiX 27 ix 2 .
dx 2(n+1)7i <4(n+1) + 2en+1 + S +(e77 1) 'n(s'n(%X)))

Integrating over (0, 1) yields the recurrence

I(n+1) = 2271(0) = Grnydrys

Initial value: [ f(1,x)dx = & X e _Z_i_l—e’?’”* In(sin(%x))

27i 8mi
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1
1(n) = e 2" X |n(sin(Zx))dx for n € Nt
; 2

Our algorithm finds

f(n+1,x)— nilf(n,x) =
d e—2ntl)mix

1 TTiX 27 ix 2 .
dx 2(n+1)7i <4(n+1) + 2en+1 + S +(e77 1) 'n(s'n(%X)))

Integrating over (0, 1) yields the recurrence

I(n+1) = 2271(0) = Grnydrys

Initial value: (1) = —% + i
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1
1(n) = e 2" X |n(sin(Zx))dx for n € Nt
; 2

Our algorithm finds

f(n+1,x)— nilf(n,x) =
d e—2ntl)mix

1 TTiX 27 ix 2 .
dx 2(n+1)7i <4(n+1) + 2en+1 + S +(e77 1) 'n(s'n(%X)))

Integrating over (0, 1) yields the recurrence

I(n+1) = 2271(0) = Grnydrys

Initial value: (1) = —% + i

Solution:

1 - 1
I(n) = —— + —
() 4n+n7r;2k—1
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Example: connection coefficients

1
Cmn = / CE(x)Cr(x)(1 —x2)”_% dx formmeN, p,v> —%
-1
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Example: connection coefficients

1
Cmn = / CE(x)Cr(x)(1 —x2)”_% dx formmeN, p,v> —%
-1

Our algorithm finds

(m—n+1)(2v+n)

Cmn+l = (1) (2(u—v)+m—n—1) Cm+1,n
c —  (Curmin)(2(u—v)+m—n)
m+2,n = (m—n+2)(2v+m+n+2) ~Mn
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Example: connection coefficients

1
cm,n:/ CE(x)CY (x)(1 — x3)""2 dx

formmeN, p,v> —%
-1

Our algorithm finds

m—n+1)(2v+n
Cmn+l = (n+§)(2(u—u))(+m—r)1—1) Cm+1,n
(utmtn)(2(p—v)+m—n)
(m—n+2)(2v+m+n+2) —Mn

Cm+42,n

Initial values: ¢y = B(%, v+ %) c10=0
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Example: connection coefficients

1
Cmn = / CE(x)Cr(x)(1 —x2)”_% dx formmeN, p,v> —%
-1

Our algorithm finds

(m—n+1)(2v+n)

Cmntl = (1)2(p—v)+m—n—1) Cm+Ln
c —  (Curmin)(2(u—v)+m—n)
m+2,n = (m—n+2)(2v+m+n+2) ~Mn

Initial values: ¢y = B(%, v+ %) c10=0

Solution:

o[BG DU =2k
mn fm+n=2k+1
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