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Appell hypergeometric series

Recall the Pochhammer symbol notation for the shifted factorial:

(a) :_{i(a-l-l)...(a-l-n—l) ::22(1),2,

The (generalized) hypergeometric series is defined by

ai,as,...,ar (a1)n(a2)n---(ar)n
F. x| = x".
s(bl,bg,...,bs ) nz>(:) n! (bl)n~~~(bs)n
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Appell hypergeometrlc series

Recall the Pochhammer symbol notation for the shifted factorial:

ala+1)...(a+n—-1) ifn=1,2,...,
1 if n=0.

The (generalized) hypergeometric series is defined by

ai, az,...,dar (al)n (aZ)n-~'(ar)n
F. x| = x".
5<b1,b2,...,b5 ) Z n! (bl),,...(bs),,

n>0

Goal: We would like to generalize the GauB hypergeometric function

(7 bix) = 3 @

n>0

to a double series depending on two variables.
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Appell series

In the following, we follow, to great extent, the classical expositions from
W.N. Bailey, Generalized hypergeometric series, CUP, 1935, and
L.J. Slater, Generalized hypergeometric functions, CUP, 1966.
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Transformations Reduction Extensior

Appell series

In the following, we follow, to great extent, the classical expositions from
W.N. Bailey, Generalized hypergeometric series, CUP, 1935, and
L.J. Slater, Generalized hypergeometric functions, CUP, 1966.

We consider the product
a, b a, (@)m (a")n (B)m (B')n
F . F . — m I'I'
2 1( c 'X> 2 1( c’ ,y) ZZ m!n! (€)m(c')n Yy

m>0n>0
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In the following, we follow, to great extent, the classical expositions from
W.N. Bailey, Generalized hypergeometric series, CUP, 1935, and
L.J. Slater, Generalized hypergeometric functions, CUP, 1966.

We consider the product

(1) () S et

m>0n>0

Now replace one, two or three of the products (a)m (a')n, (b)m (b')n,
(€)m (¢")n by the corresponding expressions

(a)m+m (b)ernv (C)m+n~
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In the following, we follow, to great extent, the classical expositions from
W.N. Bailey, Generalized hypergeometric series, CUP, 1935, and
L.J. Slater, Generalized hypergeometric functions, CUP, 1966.

We consider the product

(1) () S et

m>0n>0

Now replace one, two or three of the products (a)m (a')n, (b)m (b')n,
(€)m (¢")n by the corresponding expressions

(a)m+m (b)ernv (C)m+n~

There are five possibilities, one of which gives the series

b
53 Clnta o s (%51 )
m!n! C

(S)m
m>0 n>0 m+n
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Appell series  Conti

Four remaining possibilities (Paul Appell [1855-1930], 1880; and
P. Appell & Marie-Joseph Kampé de Fériet [1893-1982], 1926):

(abb ny

F(abb c,c’; xy

Fs(a,a’;b,b;cix,y) :

Fa(a;b;c,c'sx,y)

Multiple hypergeometric series — Appell series and beyond

m+n b) (bl)n m._.n

ZZ il @ XY i<
m>0n>0 m+n

b)m (b
ZZ Im+n( )m( )"men’ |X|+|y‘<1.
m>0 n>0 mtat (€)m (¢')n

n(b
=y 3 et BBy <
m>0 n>0 m+n
m+n m+n m..n 1 1

ZZmlnl C) )Xy7 2 +lyfz <1
m>0 n>0



Appell series

Simple observations:

/
Fi(abbicix,y)=> (@) (Bl (b)me2F1<a+ m b ;}’> :

= m! (¢)m c+m
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Simple observations:

b N @nB)m (@t m b
Fl(a’b7b'CvX’y)_mz>:O m!(C)mX 2F1 C+m Y-

Fi(a; b, b';c;x,0) = Fa(a; b, b’ ¢,¢';x,0) = F3(a,a’; b, b5 ¢ x,0)

= Fa(a;b;c,c’;x,0) = 2F1<a’cb;x).
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Simple observations:

b)m , b
(abb’cxy Z—() m2F1(3+m ,y>

2w (O c+m

Fi(a; b, b';c;x,0) = Fa(a; b, b’ ¢,¢';x,0) = F3(a,a’; b, b5 ¢ x,0)

= Fa(a;b;c,c’;x,0) = 2F1<a’cb;x).

Fi(a;b,0;¢;x,y) = F2(a; b,0;¢,¢; x,y)

= F3(a,d;b,0;¢;x,y) = 2F1<a’cb;x>.
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Contiguous relations

Contiguous relations
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Contiguous relations

All contiguous relations for the F; can be derived from these four:
(a—b—b)F(abbicix,y) —aFi(a+1,b,b;c;x,y)
+bFi(ab+1,b¢:x,y) +b Fi(ab, b +1;¢x,y) =0,
cFi(abbicix,y) = (c—a)Fi(ab,bic+1x,y
—aFi(a+1;b,b;c+1,x,y) =0,

cFi(a;b,b';c;x,

cFi(abbicix,y)+cly —1)Fi(ab, b +1;cx,y

)
)
)
+c(x—1)F(ab+1,b;¢x,y)
)=
)
c—a)yF(abb +1c+1xy)=0.

(
y) )
—(c—a)xFi(ab+1,b;c+1x,y
) )
—( (
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Contiguous relations

All contiguous relations for the F; can be derived from these four:

(a—b—b)F(abbicix,y) —aFi(a+1,b,b;c;x,y)
+bFi(ab+1,b¢x,y) + b Fi(ab,b' +1;¢c:x,y) =0

cFi(abbicix,y) = (c—a)Fi(ab,bic+1x,y
—aF(a+1;b,b;c+1,x,y

)

)

( ) =
cFi(aibbicix,y) +c(x—1)F(ab+1,b5¢x,y)
( ) =

) )

—(c—a)xFi(a;b+1,b;c+1;x,y
cFi(abbicix,y)+cly —1)Fi(ab, b +1;cx,y
—(c— )yFl(a;b,b’+1;c—|—1;X,y) =0.

Similar sets of relations exist for the other Appell functions. See

R.G. Buschman, Contiguous relations for Appell functions,
J. Indian Math. Soc. 29 (1987), 165-171.

Multiple hypergeometric series — Appell series and beyond



Partial differential equations
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Partial differential equations

Let

Then

and

z=F(abbicixy) = Z ZA,,,’,,X"’y”.

m>0n>0

(a+ m+n)(b+ m)
(1+m)(c+m+n)

Am+1,n -

m,n;

(a+m+n)(b + n)
(14 n)(c+m+n)

Am,n+1 = m,n-.
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\ppell serie: Contiguour: ion PDE's Integral represen

Partial differential equations

Let
zZ = Fl(a; b7 b/; C;x,y) — Z ZAmmeyn.
m>0n>0
Then
(a+ m+ n)(b+ m)
Am+1,n - m,ns
(1+m)(c+m+n)
and
(a+m+n)(b + n)
Am,n+1 = m,n-
(14 n)(c+m+n)
Denoting
0 0

era and QS:y@v

we see that F; satisfies the partial differential equations
1
[(6+0+a)(0+b)~ 6(0+¢+c—1)]z=0,

[(9+¢+3)(¢+b/)_§¢(9+¢+C—1)]2:0.
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Now let

0z 0z 0z 0z 072 0z2
= 8_’ q =
X

1% :@, r_&@, S—axz, t—8—y2
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Now let

0z 0z 0z 0z 072 0z2

P= 55 Q—@a f—&@, $= 58 t_6_y2'

Then z = F; satisfies the partial differential equations

x(1=x)r+y(1—=x)s+[c—(a+b+1)x]p— byg— abz =0,
yA=y)t+x(1—y)s+[c—(a+b +1)ylg— b'xp—ab'z=0.
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tions PDE's  Integral representation

Now let

0z 0z 0z 0z 0z 072

P= 55 q*@a r*g@a $= 58 t,@iyr

Then z = F; satisfies the partial differential equations

x(1=x)r+y(1—=x)s+[c—(a+b+1)x]p— byg— abz =0,
yA=y)t+x(1—y)s+[c—(a+b +1)ylg— b'xp—ab'z=0.

Similarly, z = F; satisfies the partial differential equations

x(1=x)r—xys +[c—(a+ b+ 1)x]p — byqg — abz = 0,
y(L—y)t—xys+[c' —(a+ b +1)ylg— b'xp— ab'z = 0.
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Similarly, z = F3 satisfies the partial differential equations

x(1=x)r+ys+[c—(a+b+1)x]p—abz=0,
y(I—y)t+xs+[c—(a +b +1)ylg—a'b'z=0.
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Similarly, z = F3 satisfies the partial differential equations

x(1=x)r+ys+[c—(a+b+1)x]p—abz=0,
y(I—y)t+xs+[c—(a +b +1)ylg—a'b'z=0.

and z = F, satisfies the partial differential equations

x(1 = x)r — y*t — 2xys + cp — (a+ b+ 1)(xp + yq) — abz = 0,
y(1—y)t —x*r —2xys + c'q — (a+ b+ 1)(xp + yq) — abz = 0.

Multiple hypergeometric series — Appell series and beyond
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Integral representations

Multiple hypergeometric series — Appell series and beyond



Integral representations Transformatior Reduction Extensior

Integral representations

Consider the integral

| = //ubflvblfl(l —u—v) P —ux — vy) P dudy,

taken over the triangular region u >0, v>0, u+v <1
(We also assume suitable conditions of the parameters a, b, b’, ¢ such
that the integral converges.)
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Appell series Contiguous relations  PDE's Integral representations

Integral representations

Consider the integral

| = //ubflvblfl(l —u—v) P —ux — vy) P dudy,

taken over the triangular region u >0, v>0, u+v <1
(We also assume suitable conditions of the parameters a, b, b’, ¢ such
that the integral converges.)

Now, provided |vy/(1 — ux)| < 1, we have, by binomial expansion,

(1—ux—vy)—a:(1_ux)—az(3)m< vy )m

= (1)m \1—ux
= Z i)m (1 —ux)" "
m>0
a m (a+m n n n
S DS LA
m>0 n>0
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Integral representations

Thus,

( m+n 5" rn// b—1+n b—1+m(1_u_v)c—b—b/—1dudv

m

wPﬂlﬂ%

c+m+n ’

m

Z
n>0

/ /

mm erv+nw—+mc—b—b
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Integral representations

Thus,

( m+n 5" rn// b—1+n b—1+m(1_u_v)c—b—b/—1dudv

m

wM I\/M

c+m+n

m

Z
n>0
/ /
m+n "y’"l'[b+n’b —I—m,c—b—b}7

which yields

/
I:r[b,b,c

—b—Vb
c ] Fi(a;b,b';c;ix,y).
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Integral representations

Thus,

( m+n 5" rn// b—1+n b—1+m(1_u_v)c—b—b/—1dudv

m

wM I\/M

c+m+n

m

Z
n>0
/ /
m+n "yml'[b+n’b —I—m,c—b—b}7

which yields

/
I:r[b,b,c

/
;b_b] Fi(a;b,b';c;ix,y).

(While I is a double integral, a single integral for F; even exists. We will
turn to that later.)
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Integral representations

Simlarly,

1,1
// ub_lvb/_l(l - u)C_b/_l(l —v) P71 — ux — vy)"?dudv
0Jo

ro Y
e A WACT RN}
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Integral representations

Simlarly,

1,1
// ub_lvb/_l(l - u)c_bl_l(l — v)cl_bl_l(l —ux—vy) ?dudv
0Jo

o oy
:r[b,b,c b,c’ — b

c, c

} Fa(a;b,b'ic,c'ix,y),
and

//ub_lvb/_l(l —u— V)N~ ux) A1 = vy) ¥ dudy

/ o K
:r|:b7b7cclb b:| F3(ava/;b7bl;cl;x7y)7

the last integral taken over the triangular region t >0, v >0, u+v < 1.
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Integral representations

The double integral for F; is more complicated:

/71ualvb1(1 o u)cfafl(l o V)c'fbfl(l o UX)ib(l o Vy)ia
0J0

uvxy c+c'—a—b—1
1—-— dud
( (1—ux)(1—vy)) e

J— /—
:r[a’b’cc i’,c b] Fa(a; bic,c'sx(1 = y),y(1 - x)).
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Integral representations

In 1881, Emile Picard discovered a single integral for Fi.
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Integral representations

In 1881, Emile Picard discovered a single integral for F;. Let

1
"= / N1 — )T N1 = ux) TP — wy) Y du,
0

where tc > Ra > 0.
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Integral representations

In 1881, Emile Picard discovered a single integral for F;. Let

1
"= / 1 = u) (1 = ux) TP = uy) P du,
0

where Rtc > Ra > 0. Then
b b,
ZZ/ 17ucal() ume( )unyndu
s (1)m (1)

/) 1
_ Z Z l)m(l;- nm n/ a+m+n71(1 - U)cfafl du
m>0 n>0 (1)m(1)
ZZ (B)m(b')n XmyT at+m+nc—a
N () m(1), c+m+n |’

m>0n>0
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Integral representations

In 1881, Emile Picard discovered a single integral for F;. Let

1
"= / 1 = u) (1 = ux) TP = uy) P du,
0
where Jtc > Ra > 0. Then

caf bmmmb/"nn
ZZ/ 1(B)m m m(D)n

y"du
m>0n>0 (1)m (1)n
(b)m(B')n !
_ Z Z 1) (1 xm n/ a+m+n71(1 o U)cfafl du
m>0 n>0 (1)m(1)

m>0 n>0 (1)m(1)a ctmtn

ZZ b)m(b/n XM nr[a—i—m—l—n C—a:|
hence

I = F{a’ CC_ a] Fl(a; b, b';c;x,y).
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Integral representations

It follows that the incomplete elliptic integrals F and E and the complete
elliptic integral 1 can all be expressed in terms of special cases of the F;:
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Integral representations

It follows that the incomplete elliptic integrals F and E and the complete
elliptic integral 1 can all be expressed in terms of special cases of the F;:

F(o k):/¢ N —
’ 0 V1— k2sin?0

1113
—S|nq5F1<2 57515 :sin? ¢, k? sin® ¢> |§R¢|<g,

¢
k) :/ V11— k2sin?6df
0

11 1

13 e e -
_s|n¢F1<2 2 X 2 ¢,k sin ¢), |§R¢|< 5

/2 1
|‘|(n,k)=/ & =F1< ,1,;1;n,k2>~
o (1—nsin?0)y/1— k2sin6 2 202

Multiple hypergeometric series — Appell series and beyond



Transformations

Transformations
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Transformations

In the single integral for the F; series,
Fi(a;b,b'scix,y)

- r{a y } /01 w1 = u) (L - ux) (1 — uy) Y du,

,c—a
one may use the substitution of variables
u=1—-v

to prove

. . - —b' ) X Yy
Fi(a;b,bicix,y) = (1-x)"b(1-y) bﬁ(c—a,b,b/,c,xl,yl)-
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Transformations

In the single integral for the F; series,
Fi(a;b,b'scix,y)

- r{ y } /01 w1 = u) (L - ux) (1 — uy) Y du,

a,c—a
one may use the substitution of variables
u=1—-v

to prove

. . - —b' ) X Yy
Fi(a;b,bicix,y) = (1-x)"b(1-y) bﬁ(c—a,b,b/,c,xl,yl)-

For b’ = 0 this reduces to the Pfaff-Kummer transformation for the o F;:

b —a, b
2,__1(3, ;X) I(lx)szl(C »0Z >
c c x—1
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Transformations

Similarly, the substitution of variables

v
u=——
1—x+ wx

can be used to prove

F. . /.o —(1— 7aF N /.o X y—X )
1(a,b7b,C,X,y) ( X) 1<ar b b+C7b1C'X_171_X
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Transformations

Similarly, the substitution of variables

v
u=———
1—x+wx

can be used to prove

F. . /.o —(1— 7aF N /.o X y—X )
1(a,b7b,C,X,y) ( X) 1<av b b+C7va'X_171_X

For b’ = 0 this reduces again to the Pfaff~Kummer transformation for
the 5 F7 series.
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Transformations

Similarly, the substitution of variables

v

uzl—x—i—vx

can be used to prove

F. . /oo = (1 — —aF c_h—p /- L y=x .
1(a,b7b,C,X,y) ( X) 1<av b b+C7va'X_171_X

For b’ = 0 this reduces again to the Pfaff~Kummer transformation for
the > F; series.

On the other hand, if c = b+ b/, then

b’ -
Fi(aib,bib+ bix,y) = (1 X)32F1< A X)

b+b'"1—x

_ a,b x—y
—(1-y) A D7 .
(1=y)""2 l(b—i—b"l—y)
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Transformations

Similarly,

_ . XY Y
Fi(ab,b'icix,y) =(1—y) aF1<a,b,c—b—b’,c, 1—y’yTl>’

Fi(a;b,b';c;x,y)

=(1—-x) P -y) "R (c —a,c—b—Vb.,b;cx, L) ,

Fi(a;b,b'icix,y)

=(1-x)"t1 —y)c_a_b,ﬁ(c—a; b,c—b—1b;c; }{:i,y> .
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Transformations

Similarly,

X Yy
Fa(a;b,b'sc,c'ix,y) = (1—x)~ "”F2<ac—bb c,c; x_1 1—x>

_ . . X Yy
F2(a;b,b,;C,CI;X,y) :(1_y) an(a,b7C/—bl,C,C/, l_yvy_1>7

F2(a; b, b';c,c’sx,y)

:(1—x—y)aFg(a;c—a,c’—b';c,c’; X 4 >

x+y—1x+y—1
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Transformations

Similarly,

F, (a; b, b c, c';x,y) =(1-x)"?%F <a; c—b,b;c,c; S > ,
x

F2(a; b, b';c,c’sx,y)

:(1xy)aF2(a;ca,c’b';c,c’; X 4 >

x+y—1x+y—1

Also quadratic transformations are known for Appell functions. See

B.C. Carlson, Quadratic transformations of Appell functions,
SIAM J. Math. Anal. 7 (1976), 291-304.
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Reductions

Reduction formulae
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Reductions

Reduction formulae

The transformations imply the following reduction formulae:
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Reductions
Reduction formulae

The transformations imply the following reduction formulae:
Fly = x]:
/ c—ac—b-—"b
Fl(a; b, b’;c;x,x) = (1—x)ca"b-b 2F1< ’ c ;X> )
By Euler's transformation this is

/
Fi(a;b,b';c;x,x) = 2F1<a7 bc+ b ;x) :
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Reductions
Reduction formulae

The transformations imply the following reduction formulae:
Fly = x]:
/ c—ac—b-—"b
Fl(a; b, b’;c;x,x) = (1—x)ca"b-b 2F1< ’ c ;X> )
By Euler's transformation this is

/
Fi(a;b,b';c;x,x) = 2F1<a7 bc+ b ;x) :

Filc = b+ b):

) ’. /. o - —a a’b-u
Fi(aib,bib+bx,y) = (1-y) 2F1(b+bf’1—y>'
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Reductions  Extensior

Reduction formulae

The transformations imply the following reduction formulae:
Fly = x]:
a,c—b—-"b"

Fi(a;b,b';cix,x) = (1X)Cabb/2F1<C_ . .X> .

By Euler's transformation this is

b+ b
Fi(a;b,b';c;x,x) = gFl(a7 c+ ;X) .

Filc= b+ b]:

_ a,b x—y
Fi(a;b,b'; b+ b; =(1- a5F; o=
1(8v ,b b+ ,X,)/) (1—-y) 7 1(b+b"1—y>

Falc = b
F(a'b b:b c/'xy):(l—x)_a F a,b’liy
2\d, Y, » Yy 1 Ry 21 c ’].—X .
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Fly =1]:
Since

(b) b
Fabbicxy) =Y Dnlbn ’"’"F1<a+m’ ;y>

e lmcm c+m
and
F a’bl FC’C_a_b R(c—a—b)>0
2 C' - c—a c—bl’ ’
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Fly =1]:
Since

(b) b
Fabbicxy) =Y Dnlbn ””"F1<a+m’ ;y>

e lmcm c+m
and
F a’bl FC’C_a_b R(c—a—b)>0
2L 7)) T lc—a, c—b|” ’
we have

) ;o _le,e—a=b a, b
Fl(a,b,b,C,X,l) _r|:c_a, C_bl:l 2F1<C_b,vx>7

for R(c—a—b") > 0.
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Since

. /.o _ (a)m(b)m m a+ma bl_
Fl(a'bvbvcvxvy)_mz>0(1)m(c)mx 2F1 c+m Y

and

a7b' o —b C—a,b. y
2F1<C,y>—(1 y) 2F1< c >7
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Reductions  Extensior

Since

b) a+m,b
Fi(a b b c _ (@)m (B)m m F » 9
ab i) = 2 0, 2 e

and b b
a, — ¢c—a
2F1< ;}/>=(1—}/) b2F1< - >7
c c

we have

Fi(aibbicix,y) =(1—y)™"

—(1—y) Y F(ac—abbicx,—2—]).
( y) 3<B,C a, b, erva 1)

Hence, any F; function can be expressed in terms of an F3 function.
The converse is only true when ¢ = a + a’.
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Since the F; function reduces to an ordinary ,f; function when
c= b+ b, we have

F3(a,c—a;b7c—b;c;x,—y >
y—1

{1 _ =3(1 _ Ne—b a,c—b y—x
=(1-x)(1~y) 2F1( '1—x>'
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Since the F; function reduces to an ordinary ,f; function when
c= b+ b, we have

F3(a,c—a;b7c—b;c;x, Y )
y—1

xR (MY,

Similarly, any F, function reduces to an f; function when ¢’ = a:
Fo(a;b,b'ic,ax,y) = (1 y)b/Fl(b;a b, b;c;x, 1 X >

(Conversely, any F; function can be expressed in terms of an F, function
where ¢/ = a.)
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Reductions tensior

Since the F; function reduces to an ordinary ,f; function when
c= b+ b, we have

F3(a,c—a;b7c—b;c;x, Y )
y—1

xR (MY,

1—x
Similarly, any F, function reduces to an f; function when ¢’ = a:
Fo(a;b,b'ic,ax,y) = (1 y)b/Fl(b;a b, b;c;x, 1 j >
(Conversely, any F; function can be expressed in terms of an F, function

where ¢/ = a.)
If further ¢ = a, then

Fa(aib,ba,2x,y) = (1—x)"2(1—y)~* 2F1<b7abl; (1—;)()(/1—)/)) '
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Reductions tensi

J.L Burchnall & T.W. Chaundy, 1940, 1941:

Fa(a;b;c,c';x(1—y),y(1 —x))
(@)m (b)m ( 1+a+b—c—c)me m
mZ>O m!()m (€")m Y

a+m, b+m a+m b+m
X 2f cam ¥ 2F1 em V)

This expansion has applications to classical orthogonal polynomials.
It can also be used to deduce the double integral representation for Fj.
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Reductions  Extensior

J.L Burchnall & T.W. Chaundy, 1940, 1941:

Fa(a;b;c,c';x(1—y),y(1 —x))
o @mB)m(ltatb—c—)m pom
- Z m! (C)m (Cl)m Y

a+m, b+m a+m b+m
><2F1< ;X> 2F1< ;y>.

c+m c+m

This expansion has applications to classical orthogonal polynomials.
It can also be used to deduce the double integral representation for Fj.

The ¢’ =1+ a+ b — ¢ special case gives the product formula

Fa(aibic,1+a+b—c;x(1—y),y(l—x))
a, b a, b
=2F1( ;X) 2F1< , ;}’>~
c c
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On the other hand, the ¢’ = b special case gives the reduction formula
Fa(a; b; c, b;x(1—y),y(1—x))

:(1_X)_a(l—Y)_a’:l(a?lJra—c,c—b;c; (l—x))g(/l—y)’xi1>,
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Reductions  Extensior

On the other hand, the ¢’ = b special case gives the reduction formula
F4(a; b;c,b;x(1—y),y(1— X))

—(1—X)3(1—y)aF1(a;1+a—C,C—b;c; (l—x))g(/l—y)’xi1>’

while putting in addition ¢ = a gives the attractive summation formula
F4(a; b;a, b;x(1—y),y(1— x)) =(1- X)l_b(]. — y)l_a(l —x—y) b

Written out in explicit terms, this is

> Z - ,";,“ "”"n "(1—y)"y"(1 - x)"

m>0n>0
==Xy P -x—y)
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Reductions  Extensior

On the other hand, the ¢’ = b special case gives the reduction formula

Fa(ai by c, b x(1 —y), (1 - x))

—(1—X)3(1—y)aF1(a;1+a—C,C—b;c; (l—x))g(/l—y)’xi1>’

while putting in addition ¢ = a gives the attractive summation formula
F4(a; b;a, b;x(1—y),y(1— x)) =(1- X)l_b(]. — y)l_a(l —x—y) b

Written out in explicit terms, this is

> Z - ,";,“ "”"n ™(1—y)"y"(1 - x)"

m>0n>0
==Xy P -x—y)

For y = 0 this reduces to Newton’s binomial expansion formula

1Fo<f;X> =(1-x)""
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Extensions

Extensions
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Extensions
Extensions

In 1931, Jacob Horn studied 34 different convergent bivariate
hypergeometric series (among which are Fy, Fp, F3, F4).

Multiple hypergeometric series — Appell series and beyond



Appell series Extensions

Extensions

In 1931, Jacob Horn studied 34 different convergent bivariate
hypergeometric series (among which are Fy, Fp, F3, F4).

In 1937, M.-J. Kampé de Fériet introduced the following bivariate
extension of the generalized hypergeometric series:

- al,...,ap:bl,b’l;...;bq,bg;
Frs (ch...,c,:dl,d{;...;ds,d;; Y

_ Z (a1)mtn - - - (ap)m+n (b1)m(b1)n - - (bq)m(bfq)n xMy"
>0 (c)min---(c)mrn (d1)m(d])n . (ds)m(dl)n mint”
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Appell series Extensions

Extensions

In 1931, Jacob Horn studied 34 different convergent bivariate
hypergeometric series (among which are Fy, Fp, F3, F4).

In 1937, M.-J. Kampé de Fériet introduced the following bivariate
extension of the generalized hypergeometric series:

XY
. /. . 7.7
C17...,Cr.dl,dl,...,ds,ds,

Z (a1)mtn - - - (ap)m+n (b1)m(b1)n - - (bq)m(bfq)n xMy"
>0 (c)min---(c)mrn (d1)m(d])n . (ds)m(dl)n mint”

Ff;"(al""""’“blvbi:...;bq,b;; )

Numerous identities exist for special instances of such series.
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Extensions

P.W. Karlsson, 1994:

£03 —:a,d—a;b,d—b;c,—c;11 _re,e+d—a—b—c
LI\ d:e,d+e—a—-b—c; 7°) |le—c,e+d—a—b|’

where R(e) >0 and R(d+e—a—b—c)>0.
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Extensions

P.W. Karlsson, 1994:

£03 —:a,d—a;b,d—b;c,—c;11 7re,e+d—a—b—c
LI\ d:e,d+e—a—-b—c; 7°) |le—c,e+d—a—b|’

where R(e) >0 and R(d+e—a—b—c)>0.
S.N. Pitre and J. Van der Jeugt, 1996:

Je —:a,d—a;b,d—b;qd—c;1 ) or e,e+d—a—b—ce—d
11 d:ed+e—a—b—c )T e—a,e—b e—c ’

where (e —d) >0and R(d+e—a—b—c) > 0.
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Extensions

P.W. Karlsson, 1994:

£03 —:a,d—a;b,d—b;c,—c;11 7re,e+d—a—b—c
LI\ d:e,d+e—a—-b—c; 7°) |le—c,e+d—a—b|’

where R(e) >0 and R(d+e—a—b—c)>0.
S.N. Pitre and J. Van der Jeugt, 1996:

Je —:a,d—a;b,d—b;qd—c;1 ) or e,e+d—a—b—ce—d
11 d:ed+e—a—b—c )T e—a,e—b e—c ’

where (e —d) >0and R(d+e—a—b—c) > 0.

03— :a,d—a;b,d—b;c,e—c—1,;
F1:1< d:ied+e—a—b—cg; 1,1
7|_1—a,1—b,e,e—d,d+e—a—b—c
" |1-d,e—a,e—b,e—c,1+d—a—b|’
where (d+e—a—b—c) >0, and d —aor d — b is a negative integer.
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Extensions

In 1893, Giuseppe Lauricella investigated properties of the following four

series Ff‘"), F‘(B"), Fé"), Fé"), of n variables:
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Extensions

In 1893, Giuseppe Lauricella investigated properties of the following four
series F(") F(") F("), Fé"), of n variables:

Fj\”)(a- by,... bn;cl,.. L, Cni X1y - Xn)
E E "”1“‘ m, (b1)my -+ (Bn)m, i, m,
X. xn
m; >0 mp >0 C")mn (1)"71 v (1)mn ! n

where [x1| 4+ - + |x,| < 1.
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Extensions

In 1893, Giuseppe Lauricella investigated properties of the following four
series F(") F(") F("), Fé"), of n variables:

Fﬁ\")(a' bi,... b,,;cl,.. JChi X, x,,)
Z Z m1+ +m, (B1)my - - - (Bn)m, x™ L xm
*tn

m>0  m, >0 (en)my (Vmy - (V)m,
where [x1| + -+ |x,| < 1.
F‘(Bn)(al,.. san by, bpiCixa, ., Xn)
Z Z al ml .. é?n)m,7 (bl)m1 - (bn)mnlel N .X,:"n’
Vmytootmy, (Dmy -« (Vm,

my>0 m,>0

where |xq],...,|x,| < 1.
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Extensions

Fén)(a' b; cl,...,c,,;xl,.. , Xn)
Z Z m1+ ~+mjy (b)m1+ ~+my X{nl B ’an7
- (en)m, (Dmy - (D)im, !

m; >0 m, >0

where x| + - + [x,| 2 < 1.
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Extensions

Fé") (aibicy,. ... cn; X1, ey Xn)
Z Z m1+ ~+mjy (b)m1+ ~+my X{nl B ’an7
o (en)my (V) my - (L), "

m; >0 m, >0

where x| + - + [x,| 2 < 1.

Ff(,n) (ai by, ..., bnic; x1, ey Xn)
m mn b . bn mp, . m
Z Z 1+ - ( 1) El)')n X11...X,'7nn,

my>0 mp>0 m1+~~+m,7 (1)m1 cee

where x|, ..., |xn| < 1.
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Extensions

Fé") (a' b;ci,...,Cn; X1, .. x,,)
Z Z 3)myt-tmy (B)my+4m, XM
o (en)my (Wmy - () m, !

m; >0 m, >0

where x| + - + [x,| 2 < 1.

Ff(,n)(a'bl,.. b,,;C'Xl,.. x,,)
)m m, (b coi(B)m, m
-y Z - (Br)m El)l X xm,

my>0 m,>0 m1+"‘+mn (1)m1 et

where x|, ..., |xn| < 1.

We have

FO=Fh, FP=fm  FP=rn  FP=F.
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Extensions

Integral representation of Fé”)
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Extensions

Integral representation of Fé”)

Fé")(a; bi,....bnicixi,. ., Xn)

1
=T L ¢ ] / L = ) TN - wa) TR (1 - ux) TP du,
0

,c—a

where tc > Ra > 0.
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Extensions

Integral representation of Fé”)

Fé")(a; bi,....bnicixi,. ., Xn)

1
=T L ¢ ] / L = ) TN - wa) TR (1 - ux) TP du,
0

,c—a

where tc > Ra > 0.

This can be easily verified by Taylor expansion of the integrand, followed
by termwise integration.
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Integral representation of Fé”)

Fé")(a; bi,....bnicixi,. ., Xn)

1
= F[ ¢ ] / uafl(l - u)cfafl(l — uxl)fb1 (1= ux,,)fb" du,
0

a,c—a

where tc > Ra > 0.

This can be easily verified by Taylor expansion of the integrand, followed
by termwise integration.

Further important extension (not considered here):

Multivariate hypergeometric functions in the sense of I.M. Gelfand,
M.M. Kapranov, and A.V. Zelevinky, late 1980’s.

Multiple hypergeometric series — Appell series and beyond



A curious integral

An application: Mizan Rahman's evaluation of an integral
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A curious integral

An application: Mizan Rahman's evaluation of an integral

In 2004, George Gasper and | derived (by specializing some curious
g-series identities obtained by inverse relations) the following curious
beta integral evaluations:
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An application: Mizan Rahman s evaluation of an integral

In 2004, George Gasper and | derived (by specializing some curious
g-series identities obtained by inverse relations) the following curious
beta integral evaluations:

reras) — (c—(a+1) )/ (c —a(a+t)’(c—(a+1)(a+t)"*

2 F(2ﬁ) (c — (a+1t)?)?8
x t9 (1 —t)P~Ldt
and
(OB oy [ (e— 2o+ ) (e (a+ D(a+ 1)*!
Gy~ (G | (c (a1 PP

x(c—(a—t)(a+t)ti (1 —-t) " dt,

where R(3) > 0.
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An application: Mizan Rahman s evaluation of an integral

In 2004, George Gasper and | derived (by specializing some curious
g-series identities obtained by inverse relations) the following curious
beta integral evaluations:

_ _ B—1
8 o [t
x t9 (1 —t)P~Ldt

and

Y(c—ala B=1(c—(a a p-1
r(é);ﬁ()ﬁ) _ (C_(a+1)2)/0 (c—ala+ f)()c - ((a . 5)2;/31)( +11))
x(c—(a—t)(a+t)ti (1 —-t) " dt,

where R(3) > 0.

In our paper, we claimed that these integrals would be difficult to prove
with standard methods.
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A curious integral

Mizan Rahman, after seeing our paper, did not agree with our claim.
He immediately sent us a fax with an “elementary proof” of the first
identity using standard machinery.
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A curious integral

Mizan Rahman, after seeing our paper, did not agree with our claim.

He immediately sent us a fax with an “elementary proof” of the first
identity using standard machinery.

At some point, Mizan Rahman's proof uses a reduction formula for an F;
Appell series.
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Mizan Rahman, after seeing our paper, did not agree with our claim.

He immediately sent us a fax with an “elementary proof” of the first
identity using standard machinery.

At some point, Mizan Rahman's proof uses a reduction formula for an F;
Appell series.
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We denote the g-shifted factorial by

(39)0=1 (aqk=(1—a)(l-aq)...(1-ad"™"),
(a1, --yam @)k = (a1 @)k - - - (am: @)k, k € NU oo.
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More sums
More sums

We denote the g-shifted factorial by
(39)0=1 (aqk=(1—a)(l-aq)...(1-ad"™"),
(a1, --yam @)k = (a1 @)k - - - (am: @)k, k e NU co.

The continuous g-ultraspherical polynomials are given by

n

. o Bk (B @)o—k _itn—2k)0 _
Ca(x; Blg) = kZ:% CORCT N e , x = cosf.
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More sums

We denote the g-shifted factorial by
(39)0=1 (aqk=(1—a)(l-aq)...(1-ad"™"),
(a1, yam @)k = (a1; Dk - - - (am: 9k, k € NU oo.
The continuous g-ultraspherical polynomials are given by

_ = (B )k (B @k ign-—21)0 _
Co(x; Blg) = Z:O CORCT N e , x = cosf.

They satisfy (for |g|, |3] < 1) the orthogonality relation
(210, 7210, g) dx
C Cy
o [ ot la) o ) (S

_ (8.89:9)x (8% q)n (1-5)
(9,8% @) (9:9)n (1—fBq")
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In 1895, L.J. Rogers derived the following linearization formula for the
continuous g-ultraspherical polynomials:

Cm(x; B19) Ca(x; Blq)
min(m.n) (q; q)m+n—2k(ﬁ; q)m—k(ﬁ; q)n—k(ﬂ; q)k(62; q)m+n—k

= 2

— (8% Q) mrn—2(q: Q) m—i(G: Q)n—i(7: Q)k(BG: @) mrn—k
(1—Bgmt"2k)
(1-5)

Cm+n—2k(X; ﬁlq)
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In 1895, L.J. Rogers derived the following linearization formula for the
continuous g-ultraspherical polynomials:

Cm(x; Bla) Co(x; Blq)
:mln(z”f") (Cl q)m+n 2k(ﬁ q)m k( )n k(ﬂ Q)k(ﬁ Cl)m+n K
— (5% @)men—2k(q: O)m—k(q: Q)n—k(q: Q) (BG: @) mrn—k
o m+n—2k
ﬂ(fq;))cm+n2k(x:ﬂ|q)~

For simplicity, write this as
Cm(x: Blq) Cal(x; Bla) = > £k, Cul(x; Bla),
k

with explicity determined structure coefficients f,{ , = fn’; (58,9).
By definition, f,,’jjn = fn"m
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Linearization of the triple product C(x; 8|q) Cm(x; B8]q) Ca(x; 5]q) in two
different ways gives

ZZf/kmn x; Blq) = ZZ J £k Glxi Bla),

as we must have symmetry between n and /.
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More sums

Linearization of the triple product C(x; 8|q) Cm(x; B8]q) Ca(x; 5]q) in two
different ways gives

szykffsn ’8|q ZZ n,k m/C(Xﬁ|q)

as we must have symmetry between n and /.

Now taking coefficients of Cj(x;|q) gives the transformation formula

Z ot = fl fh,
k
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Linearization of the triple product C(x; 5|q) Cm(x; Blq) Ca(x; 5|q) in two
different ways gives

szljkmn x; Blq) = ZZ « o1 Gi(x: Blq),

as we must have symmetry between n and /.

Now taking coefficients of Cj(x;|q) gives the transformation formula
D fltmn =D flutm
k k
More generally, the r-fold sum

kz kr—l k,
Z mo, ki ml,kz fmz ks "t fmr—hkr fmnmr+1

is symmetric in {mg, m1, ..., m,y1}, resulting in transformation formulae
for multivariate basic hypergeometric series.
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The r =1 case, after analytic continuation can be written as the
following transformation formula for a very-well-poised 14¢13 series
(R. Langer, MJS & S.0O. Warnaar, 2009):

(1 — ag*) (aq/b; q)ak
Z (1-2a) (ab; q)ak

" (a,b,c,d,ab/c,ab/d,abq",q~"; q)« (g)”
(g,aq/b,aq/c,aq/d, cq/b, dq/b q1*”/b ag"tt; q)k \ b
_ (ag,4q/c,4q/d, aq/cd; q)n Z (1 —aq°%) (3q/b; q)ak
(3g,aq/c,aq/d,aq/cd; q)n = (1—3)  (ab;q)a
% (37 b7 c, d,éb/C, ab/d73bq 7q vq)k (g)2k
(q,3q/b,aq/c,aq/d, cq/b,dq/b,q'="/b,aq"**; q)x \ b

where 3 = g~ "cd/ab.

k=0

)
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By inverse relations, one obtains the following double sum identity:
5 (1—abg®™)  (ag™,q"";q)ik  (b,ab/c,ab/d,aq/cd; q), J
(1—ab)  (bgt=m,abq™; q)1ik (q,aq/c,aq/d,ab/cd; q),
, (1 —cdq“"/ab) (cdq'™'/ab? q)x (b, c,d,cd/a;q) "
(L—cdg~'/ab) (cdg~'/a;q)x (q.cq/b,dq/b,cdq/ab;q)x

_ (aq/b; q)am (abg, b, c,d,ab/c,ab/d; q)m (i)m
(ab; q)2m (1/ba QQ/b, QQ/C, BQ/d, CQ/b, dQ/b, q)m b2

1,k>0
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By inverse relations, one obtains the following double sum identity:
5 (1—abg®™)  (ag™,q"";q)ik  (b,ab/c,ab/d,aq/cd; q), J
=, (1—ab)  (bg'~™,abg™*"; q)iik (q,a9/c,aq/d,ab/cd; q)
y (1 — cdgk=!/ab) (cdq*~'/ab?; q)« (b,c,d,cd/a; q)k o
(L—cdg~'/ab) (cdg~'/a;q)x (q.cq/b,dq/b,cdq/ab;q)x

_ (aq/b; q)am (abg, b, c,d,ab/c,ab/d; q)m (i)m
(ab; q)2m (1/ba QQ/b, aq/c, BQ/d, CQ/b, dQ/b, q)m b2

These identities can be extended to the elliptic setting. For the latter, we
have

3 0(abg**?*;p)  (aq™,q ™ q,p)isk  (b,ab/c,ab/d,aq/cd; q,p)
=, 0abip)  (bg'=m abg™;q,p)iik (q,aq/c,aq/d,ab/cd; q,p)

0(cdg*~'/ab; p) (cdg'~'/ab® q,p)x (b, c,d,cd/a; q, p)« ¢
0(cdq='/ab;p) (cdg='/a;q.p)k (q.cq/b,dq/b,cdq/ab; q, p)«

_ (aq/b: g, p)om (abg, b,c,d,ab/c,ab/d; q,p)m (g)’"
(ab; q,p)2m (1/b,aq/b,aq/c,aq/d,cq/b,dq/b;q,p)m \b?
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Elliptic hypergeometric series

Let |p| < 1.
(Modified Jacobi) theta functions:

o0

0(x; p) = (x.p/xi P)oc = [[(1 = px)(1 = P/1/x).

Jj=0
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Elliptic hypergeometric series

Let |p| < 1.
(Modified Jacobi) theta functions:

o0

0(x; p) = (x.p/xi P)oc = [[(1 = px)(1 = P/1/x).

Jj=0

Theta shifted factorials:

(a;q, p)k := 0(a; p)0(aq; p)---0(ag""t;p) for k=0,1,2,....

There holds 6(x;0) = (1 — x) and (a; ¢,0)x = (a; ¢)«-
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Elliptic hypergeometric series

Let |p| < 1.
(Modified Jacobi) theta functions:
0(x; p) == (x,p/x: P)oo = | [(1 = P/x)(1 = P/ /x).
j=0

Theta shifted factorials:

(3: G, p)x := 0(a; p)0(aq; p) ---0(ag"~*; p) for k=0,1,2,....

There holds 6(x;0) = (1 — x) and (a; ¢,0)x = (a; ¢)«-

Compact notations:
O(x1, - Xm; p) := 0(x1; p) - O(xm; p),

(a1, am g )k = (a1, 9, P)k - - - (am: G, P)k-
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More sums

Inversion formula: 1
0(1/x:p) = = 0(x; p).

Quasi-periodicity:
1
0(px; p) = = 0(x; p)-

Riemann relation:

O(xy,x/y,uv,u/v;p) —0(xv,x/v,uy,uly; p) = gﬂ(yv,y/v,xu, x/u; p).
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More sums

Elliptic hypergeometric series:

§ Ck,s

k>0

where ¢g = 1 and g(k) = cky1/ck is an elliptic (doubly periodic,
meromorphic) function of k with k considered as a complex variable.
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More sums

Elliptic hypergeometric series:

§ Ck,s

k>0
where ¢g = 1 and g(k) = cky1/ck is an elliptic (doubly periodic,
meromorphic) function of k with k considered as a complex variable.

Without loss of generality,

g(x) = 0(a09™, 219", .., 35q¥)
0(q1+x, bquv sy bqu) 7

where
3031...as:qb1b2...bs

(elliptic balancing condition).
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Elliptic hypergeometric series:

§ Ck,s

k>0

where ¢g = 1 and g(k) = cky1/ck is an elliptic (doubly periodic,
meromorphic) function of k with k considered as a complex variable.
Without loss of generality,

9(30qxa aqua ey asqx) 2
0(q1+x, bquv sy bqu) 7

g(x) =
where
apar - -as = qbiby - bs
(elliptic balancing condition).

If we write g = €27, p = €2™'7, with complex o, 7, then g(x) is
periodic in x with periods o~! and 7o~ 1.
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General solution:

i (20,1, 359, P)i i

dp,d1,...,ds
E. ; -4 I
sHiTe by, ba, ..., bs 7P :| (qa bl--~7bs;q7p)k

where aga; - --as = qbyby - - - bs.
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More sums

General solution:

0 .
g, a1, ---,ds ] .22(307317~~~735xq7p)kzk

E. 1 q,p; Z
St15S by by, ... by TP 2= (q,b1 ., bs; 9, P)x

where aga; - --as = qbyby - - - bs.

For convergence, one usually requires a; = g~ (n being a nonnegative
integer), so that the sum is finite.
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More sums

Elliptic hypergeometric series first appeared as elliptic solutions of the
Yang—Baxter equation in work by Date, Jimbo, Kuniba, Miwa and Okado
in 1987, and ten years later by I. B. Frenkel and V. Turaev.
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Elliptic hypergeometric series first appeared as elliptic solutions of the
Yang—Baxter equation in work by Date, Jimbo, Kuniba, Miwa and Okado
in 1987, and ten years later by I. B. Frenkel and V. Turaev.

Their systematic study commenced at about the turn of the millenium,

after further pioneering work of Spiridonov and Zhedanov, and of
Warnaar.
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Elliptic hypergeometric series first appeared as elliptic solutions of the
Yang—Baxter equation in work by Date, Jimbo, Kuniba, Miwa and Okado
in 1987, and ten years later by I. B. Frenkel and V. Turaev.

Their systematic study commenced at about the turn of the millenium,
after further pioneering work of Spiridonov and Zhedanov, and of

Warnaar.

Frenkel and Turaev's 19 Vg summation:

z": 0(aq?; p) (a,b,c.d.e,q7"; q. p)k o
9(3; p) (qa aq/ba aq/c, aq/da aq/e, aanrl; q, p)k
_ (aq,aq/bc,aq/bd, aq/cd; q,p)n
(aq/b,aq/c,aq/d,aq/bcd; q,p)n’

k=0

where a2q"*! = bcde.
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