Photodetector Studies for Polarimetry

Christian Helebrant

DESY

Workshop on Polarization and Energy Measurements Zeuthen April 11, 2008

ILC Polarimetry

Cherenkov Detector Layouts

Test Bench

Linearity Measurements

ILC Polarimetry

Cherenkov Detector Layouts

Test Bench

Linearity Measurements

Polarimetry at ILC

- crucial process: detection of Compton scattered electrons via Cherenkov radiation
- aim at precision of $dP/P\approx 0.25$ %
- limited mainly by linearity of detector (stat. errors small; experience from other polarimeters)
- Which photodetector (PD) and hodoscope layout fulfills the requirements?

esp.: linear in a range from 1 to several 1000 photoelectrons

ILC Polarimetry

Cherenkov Detector Layouts

Test Bench

Linearity Measurements

Layout 1

Gas tubes

- cross section $\approx 1~\text{cm}^2$
- filled with C_4F_{10}
- high Cherenkov threshold (some MeV)

conventional PMT

- well-known technology
- large variety of different designs
- high sensitivity (to mechanical stress, magnetic fields, bright light etc)

Layout 2

Gas tubes same as before

Multi-Anode PM

- fast
- compact
- fits gas tube cross section perfectly
- anodes can be read out seperately
- crosstalk?

Anode Type	4 Channel (2 × 2) Multianode
Multianode PMT	R5900U-M4 Series
Multiano de PMT Assembly (Built-in Voltage Divider Circuit)	_
Effective Area (per Channel)	8.9 mm × 8.9 mm
Anode Pulse Rise Time (per Channel)	1.2 ns
Cross-talk	2 %

Layout 3

SiPM

- novel technology (little field experience)
- tiny ($\approx 1 10 \text{ mm}^2$) \Rightarrow higher spacial resolution \Rightarrow better dP/P
- great single photon detection capabilities
- very robust
- performance is sensitive to temperature changes

C. Helebrant

Layout 3

Quartz fibers

- low Cherenkov threshold (keV)
- background radiation?

SiPM

- novel technology (little field experience)
- tiny ($\approx 1 10 \text{ mm}^2$) \Rightarrow higher spacial resolution \Rightarrow better dP/P
- great single photon detection capabilities
- very robust
- performance is sensitive to temperature changes

C. Helebrant

ILC Polarimetry

Cherenkov Detector Layouts

Test Bench

Linearity Measurements

Test Bench

- light tight box (with light fibers, optical filters, mountings for different PD types, ...)
- blue LED (470 nm) with function generator
- VME-DAQ (incl. double range 12-bit QDC, 200 and 25 fC LSB)
- PDs: conventional PMT, 2x2-MAPM, several SiPMs (400 3600 pixels)

C. Helebrant

PD Studies for Polarimetry

Measurements

- test of different methods to determine linearity
- using a 2x2-MAPM
- one million single measurements
- fit results with a modified Possion function
- · determine number of incident photoelectrons from fit

Fit Results

Fit Results

ILC Polarimetry

Cherenkov Detector Layouts

Test Bench

Linearity Measurements

Optical filters

- calibrated filters
- most common method
- 3 filters used: 8 series of measurements

LED pulse length

- vary length of **rectangle** pulse
- ensures linear variation of amount of light on photo cathode
- $\Delta t=25,\,30,\,...,\,100$ ns

Method 1: optical fibers

Method 2: LED pulse length

different filters; fixed pulse length

different pulse lengths; fixed filter

- filter method: limited by errors due to insufficient knowledge of transmittance
- pulse length: statistical errors (≈ 0.15%) too high
 ⇒ more single measurements needed

different filters; fixed pulse length

different pulse lengths; fixed filter

- filter method: limited by errors due to insufficient knowledge of transmittance
- pulse length: statistical errors (≈ 0.15%) too high
 ⇒ more single measurements needed

different filters; fixed pulse length

different pulse lengths; fixed filter

- filter method: limited by errors due to insufficient knowledge of transmittance
- pulse length: statistical errors (≈ 0.15%) too high
 ⇒ more single measurements needed

different filters; fixed pulse length

different pulse lengths; fixed filter

- filter method: limited by errors due to insufficient knowledge of transmittance
- pulse length: statistical errors ($\approx 0.15\%$) too high \Rightarrow more single measurements needed
- How much statistics needed to be sensitive to non-linearities of ≈ 0.1%? Monte Carlo studies are ongoing

C. Helebrant

different filters; fixed pulse length

different pulse lengths; fixed filter

- filter method: limited by errors due to insufficient knowledge of transmittance
- pulse length: statistical errors ($\approx 0.15\%$) too high \Rightarrow more single measurements needed
- How much statistics needed to be sensitive to non-linearities of ≈ 0.1%? Monte Carlo studies are ongoing
- How much non-linearity is introduced by QDC?

C. Helebrant

PD Studies for Polarimetry

QDC Non-Linearity

Histogram Testing Method

- FSR sine wave input (10 Hz) no sawtooth to avoid artefacts from function generator
- short random gate (50 ns) triggered by noise
- 25 million samples
- code probability density $P(i) = N/\pi \cdot \sqrt{(A/2)^2 (i (A/2))^2}$
- input: $A \cdot sin(\omega x) + A/2$, A=FSR, N=25 million

Histogram Testing Method

- ratio of measured and ideal distribution is equal to code bin width $\longrightarrow \mathbf{DNL}$
- differential non-linearity: deviation from ideal bin width (1 LSB)
- looks good below 3800 QDC counts

Histogram Testing Method

- summing up yields INL
 - (+ correction of gain and offset to be 1 and 0 respectively)
- integral non-linearity
- pprox 0.1% of FSR (as stated in manual)

Double pulse

- two different LED pulses $P_{i} \gg p \label{eq:planet}$
- record $Q(\mathsf{P}_{\mathfrak{i}})$ und $Q(\mathsf{P}_{\mathfrak{i}}+p)$
- vary P_i
- differential non-linearity
- not realized yet

Mask

- four-holed mask on PD
- measure LED pulse for each hole seperately and for all together

•
$$DNL = \frac{\sum_{i=1}^{4} Q(P_i)}{Q(P_0)} - 1$$

Double pulse

- two different LED pulses $P_{i} \gg p \label{eq:planet}$
- record $Q(\mathsf{P}_{\mathfrak{i}})$ und $Q(\mathsf{P}_{\mathfrak{i}}+p)$
- vary P_i
- differential non-linearity
- not realized yet

Mask

- four-holed mask on PD
- measure LED pulse for each hole seperately and for all together

•
$$DNL = \frac{\sum_{i=1}^{4} Q(P_i)}{Q(P_0)} - 1$$

Double pulse

- two different LED pulses $P_{i} \gg p \label{eq:planet}$
- record $Q(\mathsf{P}_{\mathfrak{i}})$ und $Q(\mathsf{P}_{\mathfrak{i}}+p)$
- vary P_i
- differential non-linearity
- not realized yet

Mask

- four-holed mask on PD
- measure LED pulse for each hole seperately and for all together

•
$$DNL = \frac{\sum_{i=1}^{4} Q(P_i)}{Q(P_0)} - 1$$

Double pulse

- two different LED pulses $P_{i} \gg p \label{eq:planet}$
- record $Q(\mathsf{P}_{\mathfrak{i}})$ und $Q(\mathsf{P}_{\mathfrak{i}}+p)$
- vary P_i
- differential non-linearity
- not realized yet

Mask

- four-holed mask on PD
- measure LED pulse for each hole seperately and for all together

•
$$DNL = \frac{\sum_{i=1}^{4} Q(P_i)}{Q(P_0)} - 1$$

Double pulse

- two different LED pulses $P_{i} \gg p \label{eq:planet}$
- record $Q(\mathsf{P}_{\mathfrak{i}})$ und $Q(\mathsf{P}_{\mathfrak{i}}+p)$
- vary P_i
- differential non-linearity
- not realized yet

Mask

- four-holed mask on PD
- measure LED pulse for each hole seperately and for all together

•
$$DNL = \frac{\sum_{i=1}^{4} Q(P_i)}{Q(P_0)} - 1$$

Double pulse

- two different LED pulses $P_{i} \gg p \label{eq:planet}$
- record $Q(\mathsf{P}_{\mathfrak{i}})$ und $Q(\mathsf{P}_{\mathfrak{i}}+p)$
- vary P_i
- differential non-linearity
- not realized yet

Mask

- four-holed mask on PD
- measure LED pulse for each hole seperately and for all together

•
$$DNL = \frac{\sum_{i=1}^{4} Q(P_i)}{Q(P_0)} - 1$$

Summary and Outlook

Summary

- **linearity** of photodetectors in Cherenkov hodoscope is crucial requirement for precise polarimetry at ILC
- test bench for PD studies has been set up
- different methods of linearity measurement tested with MAPM
- analysis of results is ongoing

Summary and Outlook

Summary

- **linearity** of photodetectors in Cherenkov hodoscope is crucial requirement for precise polarimetry at ILC
- test bench for PD studies has been set up
- different methods of linearity measurement tested with MAPM
- analysis of results is ongoing

Outlook

- Monte Carlo studies on statistics and fit method
- repeat measurements with sufficient statistics
- study of further PDs
- test PDs in simulated ILC bunch train