Polarimetry:

Prototype Design for the Cherenkov Detector

Daniela Käfer daniela.kaefer@desy.de

- Cherenkov Detector Prototype
 - How does it look like?
 - Testbox: Concept & Prototype Design
- 2 Another Testbeam Period
 - Where? ...and what for?
 - Planning the procedure
- Summary & Outlook

Upstream Polarimeter: Cherenkov Hodoscope

- scatter & deflect $\approx 10^3$ electrons/bunch
- the Compton edge is always at the same spot in the Cherenkov detector
- spectra are indep. of beam energy

Prototype for the Cherenkov Detector

The Cherenkov Detector I

How it could look like in the II C:

- beam stay clear of 2 cm of the beam pipe
- tapered beam pipe with thin exit-window to avoid the creation of wake fields as much as possible...
- staggered aluminum channels (U-shaped pipes)
 - * one end occupied by an LED for calibration purposes
 - * the other end equipped with a photodetector
- each aluminum channel equipped with its own gas system (still needs a lot of design & engineering work)

The Cherenkov Detector II

- aluminum box with two channels
- thin walls of 0.5 mm (maybe even 0.3 mm)
- thin entrance (and exit) window
- flanges for a calibration system (LED-housing or laser) and for photodetector modules (quick & easy exchange)
- entire box flooded with gas (most likely: C_4F_{10})
- thin bottom side (≈ 1 cm) for setup @ELSA in Bonn...

... want Testbox with 3 Channels

Why three channels & two flanges? ...to study:

- different photodetectors at once
- crosstalk between channels
- different readout modes, depending on photodetectors, e.g. multianode photodetectors (see talk by C. Helebrant)
- different calibration systems, i.e. either via LED- or laser-light (housing or thin throughput window)
- effect of wall thickness / beam spread...

Another Testbeam Period

Some Simulated Events I

Simulation of the testbox:

- 3 channels of polished aluminum
- thin entrance window (Al so far, might be changed)
- the photodetectors are not simulated in GEANT:

choose a modular setup (e.g. ROOT macros) to be able to quickly exchange different photodetectors

vacuum chamber filled with C₄F₁₀

Some Simulated Events II

one eincident

two e incident

Advantages of U-shaped Channels I

- no synchtroton radiation incident on the photodetectors
- no (or much less) crosstalk between different channels (compared to a layout in the x/z-plane)
- only \approx 2-3 reflections → reflectivity does not have to be extremely good (e.g. 92-94% sufficient)

9-11/04/2008

Advantages of U-shaped Channels II

Comparison: U-shaped testbox versus planar SLD-layout

⇒ no, or at least, largely reduced crosstalk!

Testbeam at ELSA

ELSA: Elektronen-Stretcher-Anlage

View of the ELSA experimental area

Why @ ELSA?

- because the DESY-testbeam is terciary \rightarrow very low rate, only single electrons
- @ELSA: higher rates (10-100 nA, maybe 1000 nA)
- more electrons, not just single electron events
- but energy still only about 3 to 3.5 GeV
- will do thorough simulation studies & LED-tests before moving the testbox to ELSA.

Another Testbeam Period

9-11/04/2008

Possible Testbeam Setup

Might operate parasitic to other testbeam users...

- but need new/different beam dump @ ELSA
- probable placement right after beam extraction
- parasitic user due to small size of the actual testbox
- When? early next year (winter/spring 2009)

To allow parasitic testbeam time together with other experiments:

Another Testbeam Period

- install testbox right after the beam extraction (on top of a block of concrete, where the electron beam is bent down and dumped when a photon beam is used afterwards)
- thus: need very flat support table (movable in x- and y-directions)
- thin entrance and exit windows to reduce beam scatter and synchrotron radiation (radiation safety issues)

& Outlook

Summary

Summary & Outlook

- Conceptual design for the testbox is ongoing
- Testbox construction planning has also started (will most likely be built using resources at Uni-HH)
- Simulation studies of testbox and ILC-prototype are ongoing

Another Testbeam Period

 Proposal for testbeam time (schedule) @ELSA written (hoping to hear some good news soon)