Physics with polarized beams: motivation and requirements

- Physics requirements
 - on the machine
 - on polarization
- Physics case for polarized beams
 - general features
 - → at √s=500 GeV
 - with the baseline design
 - at GigaZ/WW threshold: see next talk by Georg
- Summary tables and conclusions

ICFA Parameter Group

- 'Scope Document no.1' (2003) and 'no.2' (2006): baseline
 - → 'full luminosity of 2 x 10³⁴cm⁻²s⁻¹'
 - 'beam energy stability and precision below tenth of percent level.'
 - 'Machine interface must allow measurements of beam energy and diff. lumi spectrum with similar accuracy.'
 - 'electron beams with polarisation of at least 80% within whole energy range.'

Options:

- 'e⁺ polarisation ~50% in whole energy range wo sign. loss of lumi...., Reversal of helicity ... between bunch crossings.'
- GigaZ: e⁺ polarisation+frequent flips essential; energy stability+calibration accuracy below tenth of percent level.'

Physics requirements for the ILC

- Have to be seen on basis of possible LHC results!
- Needed accuracy
 - ⇒ expected: for most physics studies $\Delta P/P=0.5\%$ (0.25%) sufficient; for precision measurements $\Delta P/P<0.1\%$ required
- Since polarization@IP = lumi-weighted polarization ≠ polarization@polarimeter
 - Depolarization effects have to be well under control!
 - main effects during beam-beam: ST and T-BMT effects
 - total 0.2% (see EPAC06, consistent with works of K. Thompson/A. Weidemann)
 - updates of theoretical methods under work
- Two polarimeters important to fulfill requirements

Physics case for polarized e and e+

- comprehensive overview given in 'POWER' report
 - hep-ph/0507011, now in press as Physics reports
 - → see also 'executive summary' at

 www.ippp.dur.ac.uk/~gudrid/source/
- Goals: Polarized beams required to
 - analyze the structure of all kinds of physics
 - improve statistics: enhance rates, suppress backgrounds
 - get systematic uncertainties under control
- Discoveries via deviations from SM predictions in precision measurements!
 - important in particular at sqrt{s}≤500 GeV!

Baseline design

- Undulator-based source with helical undulator (~100m length)
 - most mature source:

fits lumi requirements, DR acceptance, less activation problems, less thermal problems, easy upgrade path to polarization,...

- Specific feature:
 - could provide polarization already in baseline (if collimator, polarimeter, fast kicker povided)
 - → 30% seems to be easily achievable, maybe even 45% (see Andriy)
- Such start-polarization can be easily destroyed, of course ...
 - but useful physics could already be done with little effort!

General features

- Def.: left-handed = P(e±)<0 'L' right-handed= P(e±)>0 'R
- Which configurations are possible in annihilation channels?

LR, RL: SM and(?) NP (γ, Z)

LL, RR: NP!

Which configurations are possible in scattering channels?

depends on P(e+)

helicity of e- not coupled

with helicity of e+!

depends on P(e-)!

→ all combinations LL,LR,RL,RR can contribute

General features II

For many processes (V, A interactions) one can write:

$$\sigma(P_{e-} P_{e+}) = (1 - P_{e-} P_{e+}) \sigma_0 [1 - P_{eff} A_{LR}]$$

- Effective polarization
 - Peff:=(Pe—Pe+)/(1-Pe-Pe+)==(#LR-#RL)/(#LR+#RL)
- Fraction of colliding particles
 - Leff/ L=1/2 (1-Pe- Pe+)=(#LR+#RL)/(#all)

	RL	LR	RR	LL	P_{eff}	$\mathcal{L}_{eff}/\mathcal{L}$
$P(e^{-}) = 0,$	0.25	0.25	0.25	0.25	Ο.	0.5
$P(e^+) = 0$						
$P(e^-) = -1,$	0	0.5	0	0.5	-1	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8,$	0.05	0.45	0.05	0.45	-0.8	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8,$	0.02	0.72	0.08	0.18	-0.95	0.74
$P(e^+) = +0.6$						

General features lii

- Gain in 'effective luminosity' only with P_e and P_e
 - ~similar flip frequency for e- and e+ needed, otherwise this gain is lost! (see also Sabines talk yesterday!)
- Gain in accuracy for A_{LR}:

$$\Delta P_{eff} = \left(\frac{\partial P_{eff}}{\partial P_{e^{-}}}\right) \Delta P_{e^{-}} + \left(\frac{\partial P_{eff}}{\partial P_{e^{+}}}\right) \Delta P_{e^{+}}$$

$$= \left(\frac{\partial P_{eff}}{\partial P_{e^{-}}}\right) \left(\frac{\Delta P_{e^{-}}}{P_{e^{-}}}\right) P_{e^{-}} + \left(\frac{\partial P_{eff}}{\partial P_{e^{+}}}\right) \left(\frac{\Delta P_{e^{+}}}{P_{e^{+}}}\right)$$

$$\begin{split} \frac{\Delta P_{eff}}{P_{eff}} = \frac{1 + P_e - P_e +}{1 - P_e - P_e +} (\frac{\Delta P}{P}) \\ \sim & \Delta A_{LR} / A_{LR} \end{split}$$

the gain for A_{LR} a priori independent on flip frequency but flipping desired to keep flexibility

General features IV

Statistics

(80%,60):
$$P_{eff} = 95\%$$
 (90%,60%): $P_{eff} = 97\%$ (90%, 30%): $P_{eff} = 94\%$ $\Delta A_{LR}/A_{LR} = 0.3$ $\Delta A_{LR}/A_{LR} = 0.27$ $\Delta A_{LR}/A_{LR} = 0.5$

gain: factor~3 factor>3 factor~2

NO gain with only pol. e- (even if '100% ')!

'Top' physics

Current average:

 $m_{top} = 172.6 \pm 1.4 \text{ GeV}$

- Expectations at the LHC:
 - $\rightarrow \Delta m_{top} \sim 1 \text{ GeV}$
 - → Yukawa couplings ~ 20 % (with slight model assumptions)
- Expectations at the ILC:
 - → Mass via threshold scans: m_{top} ~ 100 MeV (theory dominant)
 - → Yukawa couplings via t t H : difficult due to small rates, but < 20%
 - Unique access to electroweak couplings
- Why are top properties so important?
 - m_{top} is dominant uncertainty for elw. precision observables
 - ILC precision mandatory already now to exploit theory at quantum level!

Unique access to electroweak couplings

• Process: e+ e- \rightarrow t t (test of couplings t $\rightarrow \gamma$, Z)

$$\Gamma^{\mu}_{t\bar{t}\gamma,Z} = ie\{\gamma^{\mu} [F_{1V}^{\gamma,Z} + F_{1A}^{\gamma,Z} \gamma^{5}] + \frac{(p_{t} - p_{\bar{t}})^{\mu}}{2m_{t}} [F_{2V}^{\gamma,Z} + F_{2A}^{\gamma,Z} \gamma^{5}]\}$$

Studies at threshold:

$$v_t = (1 - \frac{8}{3} \sin^2 \theta_W)$$
 via A_{LR}
 $\Rightarrow \Delta A_{LR}/A_{LR} \sim \Delta P_{eff}/P_{eff}$

- up to per mille level
- Can be improved via polarized beams:

Form factor	SM value	$\sqrt{s} = 500 \mathrm{GeV}$		$\sqrt{s} = 800 \mathrm{GeV}$	
		p = 0	p = -0.8	p = 0	p = -0.8
F_{1V}^Z	1		0.019		
F_{1A}^Z	1		0.016		
$F_{2V}^{\gamma,Z} = (g-2)^{\gamma,Z}_{t}$	0	0.015	0.011	0.011	0.008
$\operatorname{Re} F_{2A}^{\gamma}$	0	0.035	0.007	0.015	0.004
$\operatorname{Re} d_t^{\gamma} [10^{-19} \text{ e cm}]$	0	20	4	8	2
$\operatorname{Re} F_{2A}^Z$	0	0.012	0.008	0.008	0.007
$\mathrm{Re} d_t^Z [10^{-19} \ \mathrm{e} \ \mathrm{cm}]$	0	7	5	5	4
$\operatorname{Im} F_{2A}^{\gamma}$	0	0.010	0.008	0.006	0.005
$\operatorname{Im} F_{2A}^Z$	0	0.055	0.010	0.037	0.007
F_{1R}^W	0	0.030	0.012		
$\mathrm{I}mF_{2R}^{W}$	0	0.025	0.010		

Determination of Higgs properties

- Expectations at the LHC:
 - Higgs mass: up to ∆m_H =100-200 MeV
 - Higgs couplings: 15%-40% (with some model assumptions)
 - Higgs spin: challenging
- Expectations at the ILC:
 - at top threshold (√s=350 GeV) and at √s=500 GeV up to ∆m_H=50 MeV!
 - absolute couplings: 1-5 %
 - Establishing of ew sym. breaking: triple Higgs couplings at 500 GeV up to 22%
 - Higgs spin: clear access via threshold scan
 - non-Standard Higgs properties: CP-properties
 - disentangling of light SUSY Higgs and SM Higgs via precision measurements of couplings

Physics with a light (SM-like) higgs

Light Higgs, e.g. mH=130 GeV: HZ and H vv similar rates at 500 GeV

- P(e-), P(e+) needed for:
 - separation
 - background suppression
- σ (H Z) / σ (H νν): (+80%,0) \rightarrow (+80%,-60%)

Configuration	Scaling factors		
(P_{e^-}, P_{e^+})	$e^+e^- \rightarrow H\nu\bar{\nu}$	$e^+e^- \rightarrow HZ$	
(+80%, 0)	0.20	0.87	
(-80%, 0)	1.80	1.13	
(+80%, -60%)	0.08	1.26	
(-80%, +60%)	2.88	1.70	
(+80%, -30%)	0.14	1.06	
(-80%, +30%)	2.34	1.42	

- (+80%,0) \longrightarrow (+80%, -30%): ratio HZ / H $\nu \nu$ \longrightarrow gain ~ factor 2

Higgs couplings

Couplings determination: high rates and lumi needed

- measurement of couplings in Higgs-strahlungs process at √s=350 GeV
- → beam polarization (80%,0) → (80%, 60%): improvement by about 30%.
- triple Higgs couplings: e.g. in HHZ at √s=500 up to 22% (unpolarized beams)
- estimate: further gain of 30%-50% precision if both beams polarized

Top-Higgs Yukawa couplings

- Expectations at the LHC:
 - → Yukawa couplings up to ~20% (with some model assumptions)
- Expectations at the ILC:
 - process t t H: difficult due to small rates (but threshold effects!)
 - accuracy about 24% for mH=120 GeV (unpolarized beams)
 - improvement factor 2.5 when (80%, 0%) -> (80%,60%)
 - \rightarrow due to gain in ΔA_{LR} accuracy
- Precise measurement important
 - in general
 - → also for distinction between SM and SM-like Higgs ...

Further SUSY particles

- Whats needed for establishing SUSY?
 - Spin verification: via analysis of angular distributions
 - Couplings measurement: Yukawa couplings = gauge couplings
 - Precise mass measurements
 - Unraveling the SUSY breaking mechanism and test unification
 - 'model- independent' determination of the parameters (105 already in the MSSM!)
- Expectations at the LHC:
 - Coloured SUSY partners: discovery reach m[~]_{q,g} < 2-2.5 TeV</p>
 - Non-coloured partners: a) via Drell-Yan m_χ < 250 GeV</p>
 b) via cascade decay chains

- Parameter determinations: in specific SUSY breaking models
- Particularly promising field for LHC/ILC interplay studies!

Properties of SUSY particles

Association of chiral electrons to scalar partners $e_{L,R} \leftrightarrow \tilde{e}_{L,R}$ and $e_{L,R}^+ \leftrightarrow \tilde{e}_{R,L}^+$:

s-channel

t-channel

1. separation of scattering versus annihilation channel

- 2. test of 'chirality': only $\tilde{e}_L^+ \tilde{e}_R^-$ survives at P(e-) > 0 and P(e+) > 0!
 - (90%,60%)~200 fb / 50 fb ~ 4, (90%, 30%)~ 175 fb / 75 fb ~ 2.3
- Even high P(e-) not sufficient, P(e+) is substantial!

Transversely polarized beams

- Remember: only effects detectable if P(e-) and P(e+)
 - enables to exploit azimuthal asymmetries
- Offers the construction of CP-odd observables in neutralino

production

 Offers distinction between SM and different models of extra dimensions

- Since P_T(e⁻) x P_T(e⁺)-dependence:
 - effects decrease by about a factor 2 when using (80%,30%) instead of (80%60%)
- Transversely polarized beams very effective, need polarized e⁻ and e⁺!

Summary table of POWER report

Comparison with (80%,0): estimated gain factor when

most (80%, 60%)

(80%, 30%)

Effects for $P(e^{-}) \longrightarrow P(e^{-})$ and $P(e^{+})$ Gain& Requirement Case Standard Model: gain factor 2 top threshold Electroweak coupling measurement factor 3 Limits for FCN top couplings improved factor 1.8 $t\bar{q}$ $P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required CPV in $t\bar{t}$ Azimuthal CP-odd asymmetries give factor 1.3 worse access to S- and T-currents up to 10 TeV Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$ $W^+W^$ up to a factor 2 TGC: error reduction of $\Delta \kappa_{\gamma}$, $\Delta \lambda_{\gamma}$, $\Delta \kappa_{Z}$, $\Delta \lambda_{Z}$ factor 1.8 Specific TGC $\tilde{h}_{+} = \text{Im}(g_1^{\text{R}} + \kappa^{\text{R}})/\sqrt{2}$ $P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required $P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required Anomalous TGC $\gamma\gamma Z$, γZZ CPV in γZ Separation: $HZ \leftrightarrow H\bar{\nu}\nu$ HZfactor 4 Suppression of $B = W^+ \ell^- \nu$ factor 1.7 Top Yukawa coupling measurement at $\sqrt{s} = 500 \text{ GeV}$ $t\bar{t}H$ factor 2.5

gain factor 1.4 PT_{e-} PT_{e+} required

PT_{e-} PT_{e+} required

gain factor 2

gain factor 1.6

Conclusions

- ILC(500) physics has to be seen on basis of LHC results
 - e.g. in ttH ILC(500) only superior to LHC if both beams polarized ...
- P(e+) essential to reveal the new physics (CP, SUSY, ED)
- P(e+) essential to match required accuracy at ILC(500)
 - Higgs mechanism and couplings
 - Properties and quantum numbers of new particles
- Transversely polarized beams unique ~ P(e-)P(e+)
- P(e+)=30% from the start: already sufficient for some cases!
 (but quick upgrade path to higher P(e+)>=60% desired, of course.)
 - sufficiently qick helicity flipping needed
 - we could destroy polarization, but wouldn't that be stupid?