Extraction-Line Energy Spectrometer

Energy and Polarization Workshop
10 April 2008
DESY - Zeuthen

Eric Torrence
University of Oregon

Oregon XLS Project

 Oregon has pursued a design for an extraction-line energy spectrometer similar in style to the SLC Wisrd

- Design and performance for ILC extraction line
- Detector test beam T-475 at SLAC ESA
- Full spectrometer test w/ T-474

Extraction Line Spectrometer

- Secondary focus at detector plane
- Wigglers can be turned off for background measurements
- Long flight distance (~75m) to position-sensitive detector
- 30 cm separation on detector plane
- ~150 MeV / 100 microns need O(20 micron) accuracy

Detector plane

150 MeV / 100 um for 250 GeV beam

- 4 mRad bend (+/- 2 mRad) over ~75 meters
- 20 micron accuracy for 100 ppm (optical survey OK)
- Instrument with 100 micron quartz fibers, MaPMT or SiPM?
- Double detector improves wiggler alignment tolerance

Rad hard and robust, fast and simple readout, easy gain adjust, no RF pickup, modest cross-talk

Detector Module

Events / (0.075)

- Fused silica (quartz) fibers, read out with 8x8 MaPMT
- Observe Cerenkov light from secondary electrons
- 100 micron pitch in core region (~2 cm 128 fibers)
- I mm pitch (600 micron fibers) else (~26 cm 256 fibers)

More signal/channel, lower channel count ~1600 fibers, 24 PMTs per beam 26 cm detector can see to 50% of Enom

T-475 program

Stage I - 2006

- Check SR detection by Cherenkov in quartz fibers
- Operational Experience

Stage 2 - 2007

- Refine design to be closer to XLS
- Demonstrate E measurement by this technique ???
- Compare to BPM-based measurement

Post Stage 2 - 2008+

- Additional lab tests
- Explore other detector options

T474 BPM Spectrometer and T475 Synch Light Spectrometer Plan View

Mk-II Spear wiggler

8-pole Mk-II Spear wiggler
16 kGauss field - 1.8 meters long
+/- 0.75 mRad vertical stripe

Produces Ec ~ I MeV photons +/- I.5 cm at detector plane

Wiggler in-situ

In Beamline

SR Exit
Window

Detector Stand

PMT Shelf

2nd prototype detector

- 64 x 140 micron (100 micron active) UV fibers (Polymicro)
- Spaced on 200 micron pitch w/ grooves engraved on Invar
- Fibers held in place with Indium foil "gasket"

Construction Photos

200 micron grooves in Invar

CNC Goodness

(Photos courtesy J. Garman)

Finished Assembly

Fiber ends before trimming

60 fibers in place (4 background fibers)

Delrin "cookie" for 64 channel PMT

July 2007 Run Data

PMT view

Unconnected PMT pixels show large backgrounds
Direct PMT hits!
(or huge cross-talk at PMT)

July 2007 Run Data

- Reversing chicane moves beam from Left to Right
- Good "signal" strength
- Low/zero backgrounds
- Significant crosstalk

Recently verified with bench measurements ~10% for neighbors

Working now to measure more accurately in the bench setup

Crosstalk Take I

- Illuminate fibers at head with blue LED inside ping-pong ball
- Measure response from PMT for left or right
- Same readout as ESA (CAEN V792 VME ADC)

Channel Output, Left Side

Channel Output, Right Side

Crosstalk Take I

- Large variation in response (poor optical coupling)
- Clear L/R pattern seen (as expected)
- Large cross-talk (10-20%) not understood

Crosstalk Take II

- Use electron source to apply consistent rate
- Invar backplane prevents scintilator trigger
- Need high-intensity electron/photon source
- Possibly this Summer?

- Use Tektronix AFG3022 to simulate ILC bunch train
- Second AFG channel produces sync. sliding gate
- UV LED (395 nm), adjustable intensity from pulse amplitude
- VME readout by CAEN V792 ADC VME-PCI bridge

Test MaPMT gain and linearity in long ILC-like bunch train

Graph

PMT Loading

- MA-PMT response measured in individual train pulse
- Clear loading seen as pulse amplitude increases
- Relatively stable after ~ 20 microseconds

What changes? Gain, Linearity, or both?

PMT Linearity

Clear "knee" independent of PMT voltage, harder cutoff

MPPC Studies

Hamamatsu Multi-Pixel Photon Counters - aka SiPMTs

 $1024 (25 \mu m)^2$ pixels binary photon counting

- Avoid charge loading problems?
- Same readout as beamcal KPix variant
- Highly non-linear once saturated (counts pixels hit)
- Dynamic range issues?

Tests with these devices starting

Summary

July 2007 ESA run

- Second T-475 Detector saw first and last beam
- Detailed analysis just starting crosstalk issues

Oregon Teststand

- Other PMT, fiber, and sensor tests also ongoing
- Detailed bench measurements of detector response

Future detector activities

- Exploring other detector options
- Eventual detector post-mortem after response/crosstalk is carefully measured