Impressions and Thoughts about Polarimetry at the ILC

April 9-11, 2008 DESY (Zeuthen)

Wolfgang Lorenzon (University of Michigan)

ILC Objectives

- e⁻ e⁺ collisions
- c.m. energies: 45.6 500 GeV
- Longitudinal polarization at (IP)
 - P(e⁻) > 80%
 - P(e⁺) > 50%
- Needed accuracy
 - E P/P = 0.25% (0.1%)

 \rightarrow new territory

Electron Polarimetry

Many polarimeters are, *have been* in use, or a **planned**:

• Compton Polarimeters:

EIC	3 – 20 GeV
LEP	mainly used as machine tool for resonant depolarization
SLAC	SLD 46 GeV
DESY	HERA, storage ring 27.5 GeV (three polarimeters)
JLab	Hall A < 8 GeV / Hall C < 12 GeV
Bates	South Hall Ring < 1 GeV
Nikhef	AmPS, storage ring < 1 GeV

• Møller / Bhabha Polarimeters:

Bates	linear accelerator < 1 GeV
Mainz	Mainz Microtron MAMI < 1 GeV
Jlab	Hall A, B, C

Polarimeter Roundup

Laboratory	Polarimeter	Relative precision	Dominant systematic uncertainty	
JLab	5 MeV Mott	~1%	Sherman function	
	Hall A Møller	~2-3%	target polarization	
	Hall B Møller	1.6% (?) 2-3% (realistic ?)	target polarization, Levchuk effect	
	Hall C Møller	1.3% (best quoted) 0.5% (possible ?)	target polarization, Levchuk effect, high current extrapolation	
	Hall A Compton	1% (@ > 3 GeV)	detector acceptance + response	
HERA	LPol Compton	1.6%	analyzing power	
	TPol Compton	3.1%	focus correction + analyzing power	
	Cavity LPol Compton	?	still unknown	
MIT-Bates	Mott	~3%	Sherman function + detector response	
	Transmission	>4%	analyzing power	
	Compton	~4%	analyzing power	
SLAC	Compton	0.5%	analyzing power	

Wien filter in injector was varied from -110° to 110° to vary degree of longitudinal polarization in each hall \rightarrow precise cross-comparison of JLab polarimeters

¹ ave	ΙX	чy	ΙZ
2 μΑ	Х	Х	
70 µA			X
1 μΑ	Х		X
10 nA		X	Х
1 µA			X
	¹ ave 2 μA 70 μA 1 μA 10 nA 1 μA	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

"Spin Dance" 2000 Data

 $P_{meas} \cos(\eta_{Wien} + \phi)$

Polarization Results

Results shown include statistical errors only \rightarrow some amplification to account for non-sinusoidal behavior

Statistically significant disagreement

Even including systematic errors, discrepancy still significant

Polarization Results- Reduced Data Set

Hall A, B Møllers sensitive to transverse components of beam polarization

Normally – these components eliminated via measurements with foil tilt reversed, but some systematic effects may remain

Agreement improves, but still statistically significant deviations \rightarrow when systematics included, discrepancy less significant

Lessons Learned

- Providing/proving precision at 1% level challenging
- Including polarization diagnostics and monitoring in beam lattice design is crucial
- Measure polarization at (or close to) IP
- Measure beam polarization continuously
 - protects against drifts or systematic current-dependence to polarization
- Flip electron and laser polarization
 - fast enough to protect against drifts

• Multiple devices/techniques to measure polarization

- cross-comparisons of individual polarimeters are crucial for testing systematics of each device
- at least one polarimeter needs to measure absolute polarization, others might do relative measurements
- absolute measurement does not have to be fast

Polarimetry at ILC

- Three ways to measure polarization at the ILC
 - upstream Compton polarimeter
 - downstream Compton polarimeter
 - e⁺e⁻ physics
- Complication
 - polarization at IP = lumi-weighted polarization ≠ polarization at polarimeter
 - depolarization and spin transport effects estimated at 0.1%-0.4% levels!
 - same level as required accuracy
 - keep errors in these effects small
- Need upstream, downstream & e⁺e⁻ physics measurements
 - determine best values for each polarimeter separately (hide from each other)
 - convince yourself that all depolarization and spin transport effects are understood
 - compare and see whether you agree
 - final calibration with $e^+e^- \rightarrow W^+W^-$
- Optimize up & downstream polarimeters separately
 - treat as independent (scattering) experiments
 - different requirements, backgrounds
- Measure beam polarization continuously
- Avoid any distraction from this goal
 - laser wire emmittance diagnostics
 - MPS collimator
- New ideas

Compact, Off-The Shelf, Rack Mountable...

Fiber Laser for Hall C Compton

- Seed laser at 1064 nm
- Fiber amplifier (50 W output at 1064 nm)
- Frequency doubling cavity
- Result: 25 W, 532 nm, 30 ps pulses at 499 MHz
- JLab Polarized source group is willing to build laser (J. Grames)

Dominant Challenge: determine A_z

- Best tool to measure e⁻ polarization
 - \rightarrow Compton e⁻ (integrating mode)
- Challenge
 - accurate knowledge of ∫BdI
 - must calibrate the electron detector
 - fit the asymmetry shape or use Compton Edge

Zero-Crossing e⁻ Analysis

Kent Paschke

Two Points of well-defined energy:

- Asymmetry zero crossing
- Compton Edge

Linear fit of the zero crossing of the Compton asymmetry

Integrate from the asymmetry from that point

Absolute calibration, the only « input » is QED (with very small corrections for finite strip size and energy resolution).

Weak dependence on energy resolution, no assumption on dispersion characteristics, variation in Y_{Det} , etc... no need to calibrate the spectrometer!

Summary

- Impressive group of people (lots of experience)
 - lots of good ideas / progress
- Big challenge to reach E E/E = 0.25%
 - no fundamental show stoppers
- Use multiple devices/techniques to control systematics

- all three ways to measure polarization needed

- build on experience, but we open to new developments
- extensive modeling needed (A_Z, depol, BMT, etc.)
- much work done, much still ahead to optimize design