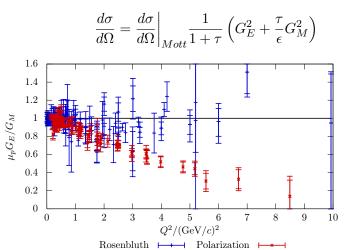
The OLYMPUS Experiment 73rd DESY PRC

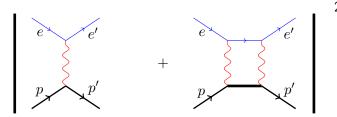
Alexander Winnebeck


Massachusetts Institute of Technology, LNS

26th April, 2012

Introduction

•0000



Plot by Bernauer

 \Rightarrow 2 photon exchange

Introduction

00000

Difficult to calculate hard 2γ contribution

⇒ Measure it!

$$R = \frac{\sigma(e^+p)}{\sigma(e^-p)} \approx \frac{(1\gamma)^2\alpha^2 + 2\alpha^3(1\gamma)(2\gamma)}{(1\gamma)^2\alpha^2 - 2\alpha^3(1\gamma)(2\gamma)} \approx 1 + 4\alpha\frac{(2\gamma)}{(1\gamma)}$$

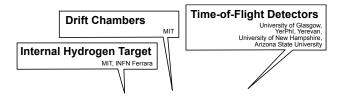
Olympus expects \approx 5% effect

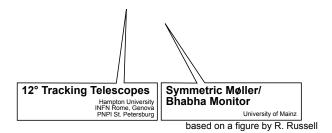
Radiative Corrections

Introduction

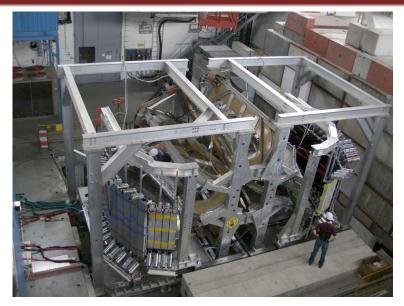
00000

- Processes generate radiative tail
- Elastic yield depends on acceptances, resolutions, and cuts
- → Need to correct for this (comparison between experiments)
 - Weekly meeting at MIT
 - Radiative Correction Workshops
 - July 2011 @ MIT
 - July 2012 @ St. Petersburg, Russia


Strategy to Obtain Results


- Have detector working and get data
- 4 Hit and track reconstruction
- Elastic event selection
- Applying radiative corrections with Monte Carlo methods
- Extract Ratio

First Results


Schedule of Olympus

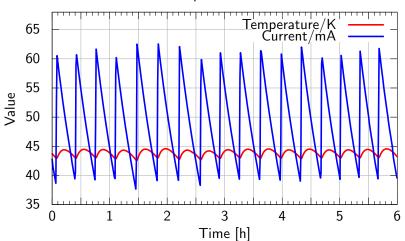
- Proposal (9/2008)
- DOE funding (1/2010)
- Shipping of Blast (spring 2010)
- Test experiment at DORIS (2/2011)
- Detector installation (until 7/2011)
- Detector Roll-in (7/16/2011)
- Olympus test beam at DORIS (8/2011)
- First data taking (1-2/2012)
- Second data taking (10-12/2012)

Experiment in Reality

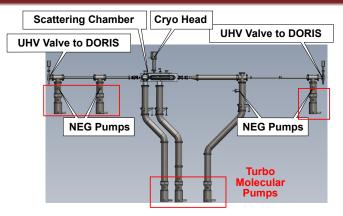
Target System

- Windowless internal gas target
- 60 cm long storage cell
- Elliptical cross section (27 mm x 9 mm)
- $100 \, \mu \text{m}$ thick aluminum wall
- Cryo cooled (43.5±1 K)
- \circ $\mathcal{O}(10^{15})$ atoms/cm²
- Hydrogen generator (electrolysis)

INFN Ferrara, MIT

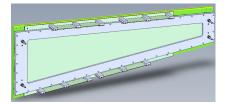


First Results



Target Cell Temperature during Run

Cell Temperature over Time



Vacuum System

- Pressure outside experiment: $2 \cdot 10^{-10}$ mbar $(7 \cdot 10^{-8}$ mbar)
- Beam life time: \approx 6 h (0.7 h)
- Build-up time $0 \leftrightarrow 0.8 \, \text{sccm}$: $90 \, \text{s}$

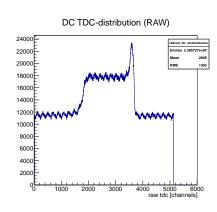
GEM Tracker (Upgrade for 2^{nd} run)

- Active area: 840 mm x 250/110 mm
- Patched triple GEM stack
- 2D readout board with 18.4° stereo angle
- 12 APVs per detector

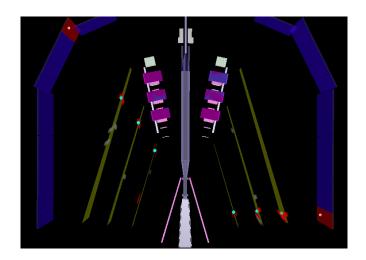
MIT, DESY, Hampton, Bonn

Status

- Aluminum parts manufactured
- Readout boards delivered
- 14/24 GEM foils delivered
- APV cards ready and tested
- Voltage divider in assembly
- Supply boards in assembly
- Readout electronics tested
- DAQ and offline ready
- Assembly: May/June (MIT)
- Testing: July (DESY)


Introduction

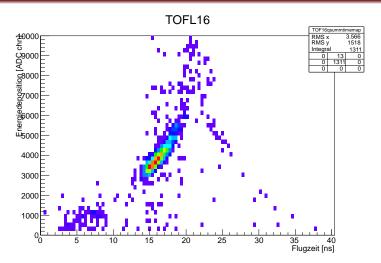
Specifications


- 3 in 1 chambers
- ArCO₂ (90:10) drift gas
- $V_{sense} = 3800 \, V$

Status

- No hot wires anymore
- 97.5% of cells working fine
- → Repair rest in June

Event Display

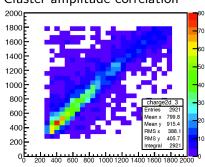

Introduction

- 18 detectors per sector
- Double sided PMT readout
 - → Noise suppression
 - \rightarrow Hit location: $(t_1 t_2)/2$
 - \rightarrow Mean time: $(t_1 + t_2)/2$
- Measure ToF, E_{den}
- Derive trigger signals
 - ORs, top bottom coincidence
 - Subsection OR
 - Kinematic trigger

Noise improved after installation of transformer

TOF Spectrum

Large angle TOF bar with trigger on 12 degree particle

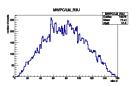

Luminosity Monitoring

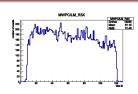
Need precise relative luminosity measurements to compare relative cross sections

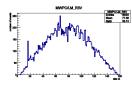
First Results

- 12° tracking telescopes
 - Elastic ep at $\epsilon > 0.97$ (TPE $\lesssim 1\%$)
 - Count tracks with protons in coincidence in TOFs
 - 2 telescopes, each has 3 GEMs and 3 MWPCs
- Symmetric Møller/Bhabha Detector
 - Count symmetric events

Cluster amplitude correlation

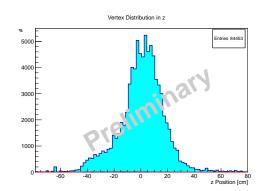

Plot by J. Diefenbach

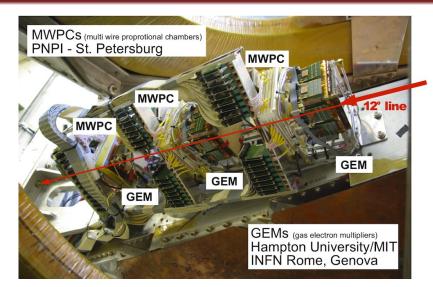

Specs and Status


- 3 detectors per telescope
- Triple GEM stack with 2D readout
- APV readout working fine
- $\delta_{res} \approx 200 \, \mu \mathrm{m}$

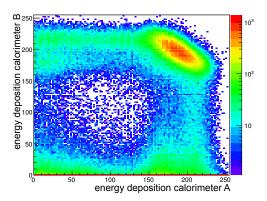
Hampton, INFN, MIT

Multi Wire Proportional Chambers

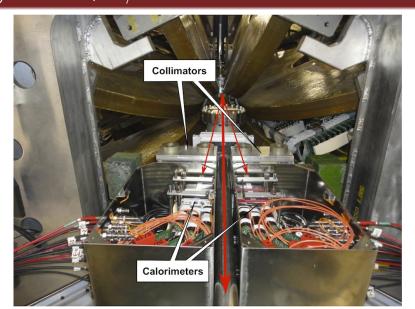




Specifications


- 3 chambers per telescope
- 3 planes per detector
- 99.9% of wires working fine
- $\eta_c = 0.98-0.99$

12° Tracking Telescopes


Symmetric Møller/Bhabha Detector

Plot by J. Diefenbach

- Pure QED processes
- Independent measurement
- Quasi dead time free $(t_d = 20 \, \text{ns})$
- Left/right coincidence with 1 GeV each
- Possible to see also elastic ep

First Results

Main Trigger System

Introduction

МІТ

- Single level scheme
- VME based FPGA board
- Dynamic configurable at runtime
- 16 parallel trigger conditions (incl. veto + pre-scaler)
 - Main trigger (≈75%)
 - 2 Luminosity trigger
 - 8 Calibration trigger
- Counters for inputs and trigger conditions

Plan to install 2^{nd} level trigger with information from wire chambers to improve deadtime ($\approx \times 10$).

Data Acquisition System

- Easy to use DAQ GUI
- Online data display
- Data backup

Introduction

- Raid + mirror server
- DESY computing center
- External hard drive
- Automated data mapping and pre-processing
- Run database + Elog

Run I (1st-27th February)

- 1 billion triggers collected
- 1710 runs
- Raw data on disc: 3.4 TB
- DAQ active: 19d 11h 14m (74%)
- Average dead time: 25%

Univ. of Bonn/HISKP

Control and Monitoring

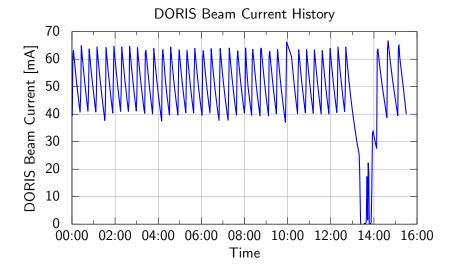
MIT, Univ. of Bonn/HISKP

Slowcontrol

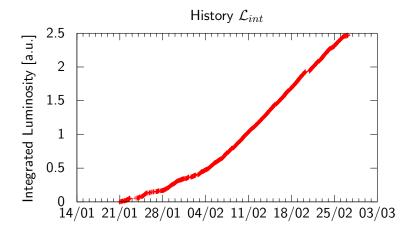
- Single system
- Web front end
- TINE interface

Monitoring

- Monitor online data stream
- Simple histograms + first analysis
- Checks DAQ and trigger

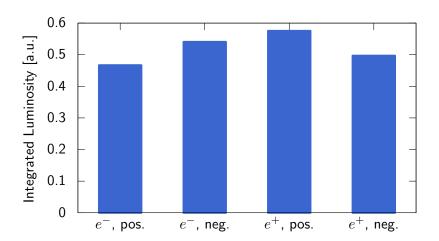

Operation schedule

1^{st} run (1^{st} -27th February 2012)

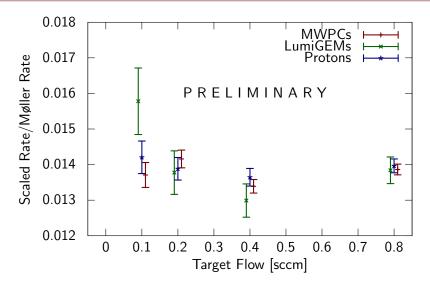

- Switch beam species every day (≤ 30 min)
- Switch magnet polarity 2.5 times a day (+ - +, + + -)
- Target flow 0.8 sccm (2 empty target runs per day)
- Beam current 60..40 mA
- Beam refill every 20 min (takes 1-2 min)

Smooth machine operation and very good collaboration with machine group

Machine Stability

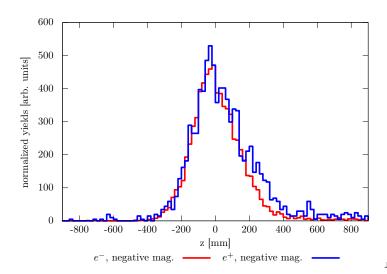


Integrated Luminosity over Time



⇒ 4 million elastic events

Integrated Luminosity per Configuration



<u>Luminosity</u> Monitors vs. Target Flow

First Results 00000

Vertex Distribution (preliminary)

Summary

- Smooth and stable machine operation
- Detectors worked stable
- DAQ, online monitoring, and slowcontrol easy to use and reliable
- Collected a good data sample (4M elastic events)
- Most of the reconstruction implemented
- Detailed treatment of radiative effects and corrections

Outlook

Introduction

- Upgrades
 - GEM tracker
 - Improved 12° trigger scintillators
 - 2nd level trigger
- Complete reconstruction
- Analysis including radiative corrections

Looking forward to run II (Oct 22^{nd} - Dec 21^{st}) to collect full statistics we need.

OLYMPUS Collaboration

Introduction

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN Bari, Ferrara, Rome, Italy
- Massachusetts Institute of Technology, USA
- Petersburg Nuclear Physics Institute, Russia
- Universität Bonn, Germany
- Universität Mainz, Germany
- University of Glasgow, UK
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia

