cluster charge studies

Daniel Pitzl
DESY CMS pixel upgrade meeting, 11.4.2012

- some observations from the test beam:
 - cluster charge vs cluster size
 - cluster charge within one pixel
 - charge across columns

Cluster size

- 4 GeV e-, run 2880
- 20° tilt
- 2-pixel clusters dominate at this tilt angle.

Cluster charge

- 4 GeV e-, run 2880, chip 10
- Test pulse gain calibration applied: gaintanh.dat
- Peak position OK
- Too broad?

Cluster charge

- 4 GeV e-, run 2880, chip 10
- Test pulse gain calibration applied: gaintanh.dat
- distinguish by cluster size:
 - peak get shifted

in-pixel charge map

- 4 GeV e-.
- chip 10, 20° tilt
- Test pulse gain calibration applied: gaintanh.dat
- Telescope track
- significant nonuniformity!
- pattern?

column and row profiles

4 GeV e-, run 2880, chip 10, 20° tilt

middle peak higher: same DC edges: some loss into next DC?

Cluster charge map

- 4 GeV e-.
- chip 10, 20° tilt
- Test pulse gain calibration applied: gaintanh.dat
- mean charge per cluster
- Trend across the chip
- Quite uniform along one column.

Cluster charge profile

- 4 GeV e-
- chip 10, 20° tilt
- Test pulse gain calibration applied: gaintanh.dat
- peak charge
- Observe ±8% gain variation across the chip:
 - ▶ test pulse problem?
 - check with X-ray source!

summary

- problems with cluster charge observed in recent beam test data:
 - charge increases with cluster size
 - charge varies within one pixel (track impact point)
 - ► charge varies by ±8% across columns
- These non-uniformities lead to a broader pulse height distribution in beam test and X-rays
- Can an improved gain calibration procedure cure them?