Pixel beam test April 2012

Daniel Pitzl
DESY CMS Pixel Upgrade, 11.4.2012

- goals: resolution and efficiency for present ROC
- scans
- runs
- monitoring

CMS Pixel in the DESY test beam

http://adweb.desy.de/~testbeam/

20.01.2012

Goals for the April 2012 beam test

- Take reference data with the present Pixel ROC PSI46 v2.3
 - large statistics
- measure efficiency and resolution
 - ► vs clock delay (0..25 ns)
 - ▶ vs bias voltage (up to 150 V with new Keithley, need Triax adapter)
 - vs threshold (soft to hard, cutting small pulses)
 - ▶ vs tilt angle (0 to 30 deg, mimic Lorentz angle)
- Procedure established:
 - operate 2 single chip modules
 - clock synchronized with the DESY II beam
 - parallel DAQ with 2 PSI46 test boards and the EUDET telescope
 - analyze with modified/extended EUTelescope software
- 2nd beam test with new PSI46xdb mid June mid July

PSI46 pixel ROC

vary in beam test

Default set up

- Upstream arm 0-1-2:
 - as close as possible to DUT, but allow for insertion and tilting
- DUT = single chip module, tilted by up to 30°,
- Downstream arm 3-4-5:
 - equally spaced between DUT and REF, allow for DUT tilting
- REF = single chip module for timing, as close as possible behind scint
- trigger: 4-fold coincidence (config: TLU AndMask 15)

timing in DESY II

CMS pixel without telescope (fast) time between events:

- DESY II circumference is 292.8 m
- DESY II has one bunch:
 - repeats every 0.976 μs(1.024 MHz)
 - $= 39 \times 25$ ns
 - hardware signal
- CMS operates with 40 MHz clock
 - synchronous to the beam
 - ▶ need to generate!

clock, bias, and trigger

from U. Hurdelbrink (MHF): generate 39 pulses of 25 ns after every DESY bunch trigger

HP Agilent 8110A
pulse generator -> clock
(borrowed from U. Koetz)

Keithley 617 bias voltage: -95V

HP pulse generatortrigger

Efficiency map

Efficiency profiles

cluster size vs tilt angle

 $atan(100/285) = 19.3^{\circ}$

CMS pixel row resolution vs tilt angle

- 6 GeV, telescope extrapolation uncertainty subtracted.
- row pixels = $100 \mu m$.
- Binary:
 - $\sigma = 100 / \sqrt{12} = 29 \mu m$
- Optimal angle 19°:
 - $\sigma = 8 \mu m$.

threshold scan

threshold from soft to hard: loose small pulses simulates reduced charge collection study cluster size, resolution, efficiency

Cluster size vs. ROC threshold

A. Gajos, summer student, Sep 2011

Ru source: 3 MeV e

- strong effect:
 - all incident angles
 - lots of scsttering
 - makes large clusters

Test beam at 0°

- weak effect:
 - ► mostly 1-pixel clusters at 0°
- repeat at 20°
 - expect larger effect

Cluster rate vs. sensor bias voltage

A. Gajos, summer student, Sep 2011

Ru source: 3 MeV e

- large pulses → cluster rate reaches plateau at -50V
- Chip variation: source alignment and threshold differences

- efficiency plateau at -80V when full charge is collected
- Chips similar: vertical incidence and optimized thresholds

CMS pixel DAQ

Data taking

- CMS pixel DAQ: from psi46expert
 - ▶ ../bin/takeData -dir chip10 (DUT), set run i, duration, start
 - ▶ ../bin/takeData -dir chip11 (REF), set run j, duration, start
- EUDAQ:
 - ► ./STARTRUN
 - config
 - ▶ start
- check CMS pixel: from takeData
 - ../../offline/b2h -c 10 -r i | less
 - ▶ root -l data00i.root
 - ► root> .x data2ps.C
 - ▶ acroread data.pdf
 - ▶ repeat for chip 11 run j

EuTelescope software in Marlin

step	output.format	constants
0. EUDAQ data taking: 900s	native.bin, e.g. 200 MB 500k triggers	
1. convert, find hot pixels: 70s	raw.lcio, e.g. 200 MB	hotpixel.db
2. clustering: 240s	clusters.lcio, e.g. 400 MB	offset.db
3. hits, coarse align: 250s	hits.lcio, e.g. 600 MB	pre-align.db
4. Millepede alignment: 12s GBL	pede.bin, e.g. 120 MB	align.db
5. track fitting: 270s GBL	tracks.lcio, e.g. 25 MB	

All steps produce ROOT histograms for monitoring

alignment of DUT and REF not yet fully automated

prompt offline feedback

- process EUTel runs on desy-cms010 as soon as possible
 - convert, cluster, hits, align, fit
 - check histograms (macros available)
 - ▶ iterate TestFitter for CMS DUT and REF alignment
 - evaluate run quality: efficiency vs time stable?

D. Pitzl: Pixel beam test plans

documentation

- paper logbook and online logbook (text or web?):
 - record settings (bias, delay, trigger, beam energy, tilt, threshold)
 - record conditions (e.g. temperature)
 - record date, time, run numbers
 - record interruptions and adjustments, access to beam area
 - sign by name
 - make fotos

proposed programme

- Defaults: DUT at 20°, bias -150 V, softest threshold, optimal delays
- Optimize rate in test beam by adjusting position ½ day
- Clock delay scan: 0..24 ns, 4 ns steps, finer at edges (~10 runs) ½ day
- Bias voltage scan: -150 to -10 V, 20 V steps (8 runs) ½ day
- DUT tilt scan: 0°, 5°, 10°, 15°, 18°, 20°, 22°, 25°, 30° (9 long runs) 1.5 day
- Threshold scan: VthrComp 97 to 7 step 10 (10 long runs) 1.5 day
- gain calibrations each day
- scan Vana (less power), always re-optimize other DACs
 2 days
 - possibly repeat delay and threshold scans
- another chip as DUT 1 day
- repeat problematic runs
 1 day
- reserve 1 day + weekends + extension week

chip 10 DACs

_			12 VIDias Pus	20
1	Vdig	6	13 VIBias_Bus	30
2	Vana	126	14 Vbias_sf	10
3	Vsf	170	<pre>15 Voffset0p</pre>	27
4	Vcomp	10	16 VIbiasOp	115
5	Vleak_comp	0	17 VOffsetR0	120
6	VrgPr	0	18 VIon	130
7	VwllPr	35	19 VIbias_PH	130
8	VrgSh	0	20 Ibias_DAC	101
9	VwllSh	35	21 VIbias_roc	190
10	VhldDel	150		
			22 VIColOr	99
11	Vtrim	113	23 Vnpix	0
12	VthrComp	97	24 VSumCol	0
253	CtrlReg	0	25 Vcal	200
254	WBC	98	26 CalDel	124
	-	-	27 RangeTemp	0

Summary

- Preparations for the April 2012 pixel beam test are well advanced:
 - hardware ready
 - offline software ready
 - measurement program defined
- to do:
 - improve online and prompt offline monitoring
 - prepare DAC parameters for lower Vana
 - prepare chip 13 as backup
 - temperature monitor with USB readout
 - shift assignments

Acknowledgements

- Ingrid Gregor, Artem Kravchenko, Igor Rubinskiy (all DESY ATLAS):
 - building the next telescope
- Adam Zuber, Holger Maser (DESY CMS):
 - tilting support frame for the test board
- Torsten Külper (FH electronics lab):
 - making the trigger and clock adapters for the test board
- Beat Meier (PSI):
 - new test board firmware with external trigger input
- Ulrich Hurdelbrink (machine group):
 - developing the clock generation setup
- Claus Kleinwort (DESY CMS):
 - General Broken Lines code, advice on alignment

D. Pitzl: Pixel beam test plans

efficiency measurement

- Trigger and DAQ for 2 test boards and telescope established
- Software to be written:
 - ▶ link telescope track to hit in timing plane.
 - need General Broken Line fit, taking material into account,
 - with interface to MillePede II for common alignment.
- efficiency = DUT / (Telescope track && timing hit)
 - ▶ as function of position, angle, bias voltage, threshold, timing, ...

Efficiency vs timing delay

- old Runs 158 179
- efficiency plateau:
 - ► only ~3 ns wide
 - ► only 92 93%
- now much better: 99.7%
- scan clock delay (relative to beam)
 - ► 0..24 ns, step 4 ns, finer steps at edges of plateau

WBC timing needs scanning

beam not synchronized to clock

Threshold Scan Results

- Uniforming of pixel thresholds (trimming) makes an efficiency plateau visible
- More close to source test results now?

Hold delay scan

- VhldDel parameter was previously scanned with calibrate pulses generated by ROC
- Test beam results show very good conformity with Vcal scans
- VhldDel = 135 optimal for sampling maximal pulses

DESY II energy cycle

Ideal DESY II Cycle (no extraction)

D. Pitzl: Pixel beam test plans

D. Pitzl: Pixel beam test plans

Size: 17.4 mm x 21.2 mm

60 recticles/wafer, 6 wafers 3 new ROC versions (PSI)

2 new TBM versions Ed Bartz, Rudgers

LCDS cable drivers with bug fixed in read back (PSI)

Digital Level Translator DTL to replace the ALT chip (PSI)

Christoph Nägeli

LCDS/LVDS converter for test setups (PSI)

SEU resistent register test structures (PSI)

ADC, PLL and oscillator test structures (PSI)

- PSI46xdb: Enlarged data buffers, reduced crosstalk and better level distribution; - 3 DACs
- PSI46dig_trig: Digital readout added; 4 DACs
- PSI46dig: Trigger mechanism removed; read back; 7 DACs
- 2 TBM versions
- DLT Digital Level Translator for POH, replacing the ALT
- LCDS/LVDS level translator for test boards (LCDS not a standard)
- Other test structures (ADC, PLL)
- Tape out: January 2012 to IBM
- 6 wafers in May 2012 (not yet confirmed from IBM)

Data Rate, Efficiency:

- Extended data buffer 32 → 80 cells
- Extended time stamp buffer 16 → 24

Crosstalk, threshold uniformity:

- 6 metal layer (process option)
- Thick top metal (LM instead of MZ process option, +37%)
 - → better power and ground distribution (lower resistance)
 - → better threshold uniformity
- New routing for calibrate signal → less crosstalk of calibrate signal
- Better decoupling of comparator and digital voltage → less crosstalk
- Different other minor layout changes to reduce crosstalk

DAC:

- 3 DACs removed: VRGPR, VRGSH and Vleakage
- All DAC's with power on reset for low power ROC configuration
- Current control instead of voltage control for S&H and analog power supply → easier and independent setup

Timing:

- Small performance optimization in column drain mechanism (timing)
- Modified comparator with reduced timewalk
- Same analog read out as PSI46 → same test board
- Comparison possible between PSI46 and PSI46xdb

Beat Meier (PSI): Pixel Upgrade plenary at CERN, 1.2.2012

D. Pitzl: Pixel beam test plans

CMS Pixel Sensors

45

- 60 wafers under production at CIS (Erfurt)
 - standard CMS pixel sensor design (double sided, n-in-n, p-spray insulation).
 - for Karlsruhe, INFN, CERN/Taiwan, MRI, Purdue, DESY.
 - 5 wafers with increased bump pad passivation opening: 30 μm, for DESY.
 - ► Delivery in Mar 2012.
- Full sensors for first bump bondings.
- Single chip sensors for tests with new ROCs.

design: Tilman Rohe, PSI