International Linear Collider (ILC)

E. Elsen

New Particle Physics Facilities, DESY, Seminar June 6, 2012

e⁺e⁻ versus pp - the folklore

• LHC

• discovery machine

• ILC

- elementary particle
- well defined: Energy, angular momentum
- democratic production of particles
- Final state (almost) completely captured

LHC vs ILC

	LHC	ILC		
total energy	14 TeV	0.5-1 TeV		
usable energy	a fraction	full		
beam	composite	point-like		
signal rate	high	low		
background	very high	low		
analysis	specific modes	nearly all modes		
reconstruction	loose along beam	full event		
status	running	ready for construction		

e⁺e⁻ Collider to complement LHC

Example: Higgs reconstruction and branching ratios

e⁺e⁻ Linear Collider will address new physics by precision measurements

Circular collider for electrons?

- Synchrotrons as a collider • relatively small rf installation • same acceleration section used again and again at LEP/LHC: $f_{rep} \sim 11$ kHz • bunches n_b $\mathcal{L} = f_{rep} \frac{n_b N^2}{4\pi \sigma_x \sigma_y}$
 - Duty cycles
 LHC f_{rep}*n_b ~ 40 MHz
 LEP f_{rep}*n_b ~ 44 kHz
- for electrons:

Synchrotron radiation is limiting maximum energy!

$$\Delta E_{\text{Umlauf}} \propto \frac{1}{\rho} \left(\frac{E}{m}\right)^4$$

Circular e⁺e⁻ collider?

- Synchrotron radiation
 - Energy loss for E>100 GeV is a considerable fraction of the beam energy
 - Momentum acceptance of the rings!
 - for E>350 GeV the entire energy is radiated in one turn

Circular e⁺e⁻ collider?

- Synchrotron radiation
 - Energy loss for E>100 GeV is a considerable fraction of the beam energy
 - Momentum acceptance of the rings!
 - for E>350 GeV the entire energy is radiated in one turn
- \Rightarrow HEP future for electrons is straight

Current status of SM Higgs Search @ LHC

- Based on 2 x ~5 fb⁻¹
 - will be doubled for the summer conferences
 - expect another factor 2 by the end of the year

- If hints were statistically confirmed signal needs to be established as e.g. the SM Higgs particle
 - scalar particle
 - branching ratios

eventually requires e⁺e⁻ collider

LEP3 to study a light Higgs?

- If a light Higgs were established at LHC could it be produced in the LEP/LHC tunnel?
 - Higgs of 125 GeV requires an e⁺e⁻collision energy of 240-250 GeV (peak of cross section in Higgsstrahlung process: e⁺e⁻ → ZH)
 - for heavy quarks an additional boost in helpful, i.e. √s>250 GeV
 - σ_{Higgs} ~200 fb
 - 10-100 fb⁻¹/a required (10³³ - 10³⁴ cm⁻²s⁻¹)

from A.Blondel et al., arXiv:1112.2518

Lumínosíty is the challenge

LEP3 Study Proposal

- Collider ring
 - 2 x 120 GeV
 - 7 GeV SR-loss per turn
 - 4 bunches of 4×10¹² e⁻
 50 MW loss per beam
 - τ_{beam} = 16 min determined by Bhabha scattering
- Top-up ring
 - fast ramping synchrotron chain; SPS and accelerator ring 44-120 GeV

Parameters at the límít – no energy margín – concept of storage doubtful

A.Blondel et al., arXiv:1112.2518 and IPAC12, TUPPR078 and references therein

Parameters and issues of LEP3

- beam dynamics studies and optics; HOM heating with large bunch currents and very small bunch lengths (<0.3cm), vertical emittance tuning, single-bunch charge limits, longitudinal effects associated with a Q_s of 0.35, low beta insertion with large momentum acceptance, parameter optimization, beam-beam effects, including beamstrahlung, and the top-up scheme;
- optics design and beam dynamics for the accelerator ring, and its ramping speed;
- the design and prototyping of a collider-ring dipole magnet, an accelerator-ring dipole magnet, and a low-beta quadrupole;
- 100 MW synchrotron radiation effects: damage considerations, energy consumption, irradiation effects on LHC and LEP3 equipment, associated shielding and cooling;
- SRF and cryogenics design and prototyping
- determining the optimum RF gradient as a compromise between cryo power and space, and the optimum RF frequency with regard to impedance, RF efficiency and bunch length;
- machine-detector interface, e.g. the integration of warm lowbeta quadrupoles inside the ATLAS and CMS detectors

from IPAC12 paper

	LEP2	LHeC	LEP3
b. energy \overline{Eb} [GeV]	104.5	60	120
circumf. [km]	26.7	26.7	26.7
beam current [mA]	4	100	7.2
#bunches/beam	4	2808	4
#e-/beam [10 ¹²]	2.3	56	4.0
horiz. emit. [nm]	48	5	25
vert. emit. [nm]	0.25	2.5	0.10
bending rad. [km]	3.1	2.6	2.6
part. number J_{ε}	1.1	1.5	1.5
mom. c. $\alpha_c [10^{-5}]$	18.5	8.1	8.1
SR p./beam [MW]	11	44	50
$\beta_x^*[m]$	1.5	0.18	0.2
β_{v}^{*} [cm]	5	10	0.1
$\sigma_x^*[\mu m]$	270	30	71
$\sigma_{\nu}^{*}[\mu m]$	3.5	16	0.32
hourglass F_{hg}	0.98	0.99	0.67
E^{SR}_{loss} /turn [GeV]	3.41	0.44	6.99
$V_{\rm RF,tot}[\rm GV]$	3.64	0.5	12.0
$\delta_{\max RF}$ [%]	0.77	0.66	4.2
$\xi_{\rm x}/{\rm IP}$	0.025	N/A	0.09
ξ_{ν}/IP	0.065	N/A	0.08
f_{s} [kHz]	1.6	0.65	3.91
$E_{\rm acc}$ [MV/m]	7.5	11.9	20
eff. RF length [m]	485	42	606
$f_{\rm RF}$ [MHz]	352	721	1300
δ^{SR}_{rms} [%]	0.22	0.12	0.23
$\sigma^{\rm SR}_{z\rm rms}$ [cm]	1.61	0.69	0.23
$L/IP[10^{32} \text{ cm}^{-2} \text{ s}^{-1}]$	1.25	N/A	107
number of IPs	4	1	2
beam lifetime [min]	360	N/A	16
$\Upsilon_{\rm BS}[10^{-4}]$	0.2	0.05	10
n_{γ} /collision	0.08	0.16	0.60
$\Delta E^{\rm BS}$ /col. [MeV]	0.1	0.02	33
$\Delta E^{\rm BS}_{\rm rms}$ /col. [MeV]	0.3	0.07	48

Some remarks on circular e⁺e⁻ collider

- It would be possible to collide e^+e^- in the LEP tunnel at $\sqrt{s}=240$ GeV
 - Luminosity is the challenge
 - Synchrotron radiation losses of 7 GeV/turn
 - Radiation fluctuations necessitate voltage of 10 GV or more
 - large momentum acceptance required (5% or so)
 - cw-mode of SRF cavities necessitates an enormous cryoplant (~50 MW)
 - Beam stability
 - Beamstrahlung at the interaction point is critical
 - Power budget
 - 100 MW radiated

not extendíble

Scheme for a Linear Collider

- Particle bunch used only once
 - extreme focussing
 - repetition rate

- High power
 - Beam stability
 - Realistic treatment of beam power and heat
 - dimensions of collider

	LEP	ILC			
$\sigma_x \times \sigma_y$	130 × 6 [µm²]	500 × 5 [nm²]			
N*f _{rep}	4 × 11 kHz	3000 × 5 Hz			

• high gradient

A Possible Apparatus for Electron-Clashing Experiments (*). M.Tigner

Laboratory of Nuclear Studies. Cornell University - Ithaca, N.Y.

Nuovo Cimento 37 (1965) 1228

While the storage ring concept for providing clashing-beam experiments (¹) is very elegant in concept it seems worth-while at the present juncture to investigate other methods which, while less elegant and superficially more complex may prove more tractable.

has been proposed almost 50 years ago only one has been built and operated: SLC

with moderate design parameters (from todays perspective)

Luminosity

Collider luminosity is approximately given by

where:

- $n_b = \text{bunches/train}$
- N =particles per bunch
- $f_{\rm rep}$ = repetition frequency
 - A = beam cross section at IP
- $H_D = \text{beam} \text{beam}$ enhancement factor

for Gaussian beams

 $\mathcal{L} = \frac{n_b N^2 f_{\rm rep}}{4\pi\sigma_x \sigma_y} H_D$

 $\mathcal{L} = \frac{n_b N^2 f_{\rm rep}}{\Lambda} H_D$

Luminosity – RF power

• using centre of mass energy

$$\mathcal{L} = \frac{(E_{\rm cm} n_b N f_{\rm rep}) N}{4\pi \sigma_x \sigma_y E_{\rm cm}} H_D$$

$$n_b N f_{\rm rep} E_{\rm cm} = P_{\rm beams}$$

$$= \eta_{\rm RF} P_{\rm RF}$$

$$\mathcal{L} = \frac{\eta_{\rm RF} P_{\rm RF} N}{4\pi \sigma_x \sigma_y E_{\rm cm}} H_D$$

$$\stackrel{E_{\rm cm}}{=} 500 \,{\rm GeV} \\ N = 10^{10} \\ n_b = 100 \\ f_{\rm rep} = 100 \,(5) \,{\rm Hz} \end{cases} P_{\rm beams} = 8 {\rm MW}$$
• including efficiencies

- RF to beam: 20-60%
- Wall plug to RF: 30-40%

>100 MW AC needed to accelerate beams and achieve luminosity

Beam-Beam Interaction

- strong mutual focusing of beams (pinch) gives rise to luminosity enhancement H_D
- As e[±] pass through intense field of opposing beam, they radiate hard photons [beamstrahlung] and loose energy
- Interaction of *beamstrahlung* photons with intense field causes copious e⁺e⁻ pair production [background]

Beam Beam Interaction at IP

Beam beam characterized by
$$D_{x,y} = \frac{2r_e N \sigma_z}{\gamma \sigma_{x,y} (\sigma_x + \sigma_y)} \approx \frac{\sigma_z}{f_{\text{beam}}}$$

For storage rings $f_{beam} \sim \sigma_z$ and $D_{x,y} \sim 1$.

In a LC, D_y~10-20 and hence $f_{beam} < \sigma_z$

Enhancement factor (typically $H_D \sim 2$)

$$H_{D_{x,y}} = 1 + D_{x,y}^{1/4} \left(\frac{D_{x,y}^3}{1 + D_{x,y}^3} \right) \left[\ln(\sqrt{D_{x,y}} + 1) + 2\ln\left(\frac{0.8\beta_{x,y}}{\sigma_z}\right) \right]$$

Hour glass effect

Hour-glass effect

 β = "depth of focus"

reasonable lower limit for β is bunch length σ_z

Beamstrahlung

RMS relative energy loss

$$\delta_{BS} \approx 0.86 \frac{er_e^3}{2m_0 c^2} \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{(\sigma_x + \sigma_y)^2}$$

Would like to make $\sigma_x \sigma_v$ small to maximise luminosity

BUT keep ($\sigma_x + \sigma_y$) large to reduce δ_{BS} .

Trick: use "flat beams" with
$$\sigma_x \gg \sigma_y \qquad \delta_{BS} \propto \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{\sigma_x^2}$$

Then choose σ_x to fix δ_{BS} , and make σ_y as small as possible to achieve high luminosity.

For most LC designs, $\delta_{BS} \sim 3-10\%$

Beamstrahlung

Returning to L scaling law, and ignoring H_D

$$\mathcal{L} \propto \frac{\eta_{\rm RF} P_{\rm RF}}{E_{CM}} \left(\frac{N}{\sigma_x}\right) \frac{1}{\sigma_y}$$

From flat-beam beamstrahlung

$$\frac{N}{\sigma_x} \propto \sqrt{\frac{\sigma_z \delta_{BS}}{E_{CM}}}$$

hence

$$\mathcal{L} \propto rac{\eta_{\mathrm{RF}} P_{\mathrm{RF}}}{E_{\mathrm{cm}}^{3/2}} rac{\sqrt{\delta_{\mathrm{BS}} \sigma_z}}{\sigma_y}$$

Small vertical beam size

$$\mathcal{L} \propto \frac{\eta_{\rm RF} P_{\rm RF}}{E_{\rm cm}^{3/2}} \frac{\sqrt{\delta_{\rm BS} \sigma_z}}{\sigma_y}$$

$$\sigma_y = \sqrt{\frac{\beta_y \epsilon_{n,y}}{\gamma}}$$

with $\varepsilon_{n,y}$ normalised vertical emittance and β_y the vertical β -function at the IP.

$$\mathcal{L} \propto \frac{\eta_{\rm RF} P_{\rm RF}}{E_{\rm cm}^{3/2}} \sqrt{\frac{\delta_{\rm BS} \gamma}{\epsilon_{n,y}}} \sqrt{\frac{\sigma_z}{\beta_y}} \propto \frac{\eta_{\rm RF} P_{\rm RF}}{E_{\rm cm}} \sqrt{\frac{\delta_{\rm BS}}{\epsilon_{n,y}}} \sqrt{\frac{\sigma_z}{\beta_y}}$$

Optimised Scaling Law

$$\mathcal{L} \propto \frac{\eta_{\rm RF} P_{\rm RF}}{E_{\rm cm}} \sqrt{\frac{\delta_{\rm BS}}{\epsilon_{n,y}}} H_D \quad \text{for } \sigma_z \approx \beta_y$$

- For high luminosity
 - high RF-beam conversion efficiency
 - high RF power
 - small normalised vertical emittance
 - strong focussing at IP (small β_y and hence small σ_z !)
 - and could allow for larger beamstrahlung if willing to live with consequences

Concepts of rf acceleration

- Resonator required for
 - longitudinal component E_z
 - matching of phase velocity
- Two concepts

CUC

• Traveling wave

$$E_z = E_0 \cos(\phi)$$

- Bunch (entirely) exhausts traveling wave during transit/acceleration;
- Standing $E_z = E_0 \sin(\omega t + \phi) \sin(kz)$ wave $= E_0 \sin(kz + \phi) \sin(kz)$
 - Particle bunch is accelerated by the mean value of the field; field is rather unaffected (large reservoir).

rf generation

- Klystrons
 - velocity modulation of an electron beam by an external field is translated into a density modulation of the electron beam in the clystron
 - rf field is extracted

• field of moving charge is extracted from suitable resonant structures.

ILC Layout (RDR version)

- Superconducting acceleration over a length of ~10 km
 - Nominal gradient: 31.5 MV/m
 - undulator based positron production

Global Design Effort (GDE) for the ILC

GDE ILC timelines

GDE approaching its original goals

Priorities during Technical Design Phase

Global SCRF Technology

Implicit Goal

Develop expertise and infrastructure for 1.3 GHz 9-cell cavities in all 3 regions

This has been achieved

Global SCRF Technology: Asia

Global SCRF Technology: America

Global SCRF Technology: Europe

Major R&D goals for Technical Design

• SCRF

- High Gradient R&D globally coordinated program to demonstrate gradient by 2010 with 50% yield; improve yield to 90% by TDR (end 2012)
- Manufacturing: plug compatible design; industrialisation, etc.
- Systems tests: FLASH; plus NML (FNAL), STF2 (KEK) post-TDR
- Test Facilities
 - ATF2 Fast Kicker tests and Final Focus design/performance Delayed due to EARTHQUAKE RECOVERY
 - CesrTA Electron Cloud tests to establish damping ring parameters/design and electron cloud mitigation strategy
 - FLASH Study performance using ILC-like beam and cryomodule (systems test) Future STF (KEK), NML (Fermilab)

Cavity Yield

Differential yield

more statistics soon to come from European XFEL

S1-Global Collaboration

Test of FLASH Module / first XFEL prototype

- Cavity test in 2009: 34.75 MV/m
- Cavities in module 32.5 MV/m
- Operation at FLASH at 30 MV/m and 10 Hz
- Increased FLASH energy to 1.2 GeV
- Collaboration IHEP/Beijing, CEA-IRFU/Saclay, IN2P3-LAL/Orsay, INFN/ Milano, CIEMAT/Madrid and DESY

9mA Experiments in TTF/FLASH

Recent tests at FLASH – Operation near Quench limit

- Individual gradients flat to <<1% p-p
- Several cavities within 10% of quench
- 'Crash test': very rapid recovery of 800µs / 4.5mA after beam trip
- Ramped up current from ~zero to 4.5mA with ACC67 gradients approaching quench
- 'Cavity gradient limiter' to dynamically prevent quenching without turning off the rf

FALSH: Evaluating rf power overhead

- Klystron high voltage was reduced from 108KV to 86.5KV so that the rf output just saturated during the fill
 4.5 mA/800 μs
- The required beam-on power ended up being ~7% below saturation

traín

STF Quantum beam experiment at KEK

KEK-STF Quantum-Beam Accelerator

High-flux X-ray by Inverse-Compton scattering 10mA electron beam (40MeV, 1ms, 5Hz) 4-mirror laser resonator cavity head-on collision with beam

Goal : 10 mA

collision point (Laser, electron beam)

Target: 1.3 x 10¹⁰ photons/sec 1%bandwidth

2012 Feb : cool-down started, April : beam acceleration

Beam acceleration (40 MV) and transport for 1 ms, successful ! April, 2012

shows the versatility of SCRF cavities: high current beam stable operation

Beam Acceleration Test Plan at FNAL

Beyond ILC TDR

- Continued progress in SRF gradient : breakthrough of 45 MV/m in 1-cell, ~60 MV/m record; 45 MV/m in 9-cell
- GDE began in 2005: produce a design for ILC and coordinate worldwide R&D efforts
- New SRF Test Facilities in operation: STF at KEK and NML at Fermilab
- Upgrade of CEBAF to 12 GeV underway at Jefferson Lab (80 cavities)
- FLASH operation and construction of European XFEL underway (640 cavities)

2-cell cavity with end-group reached > 50 MV/m

Accelerator Systems

• BDS

- ATF recovery after "earth quake" in 2011
- Damping Ring
- e⁺ source
- RTML and ML beam dynamics

ATF2 status after earthquake recovery

largest $M_{meas} = 0.522 \pm 0.042 \iff \sigma_{y,meas} \sim 165 \text{ nm}$

2/17: 30 deg	M	ΔM	σ_y^*	$\Delta \sigma_y^*$	avg E_{sig} / ICT [GeV / 10 ⁹ e]	
18:07	0.426	0.039	194.98	6.21	2.359	
18:09	0.390	0.043	206.63	6.48	2.403	
18:12	0.433	0.036	192.55	5.73	2.269	
18:14	0.439	0.034	190.82	5.49	2.290	
18:16	0.437	0.038	191.29	6.16	2.303	S/N:4-5
18:18	0.460	0.040	183.86	6.78	2.267 •	Signal jitter ~ 22%
18:20	0.444	0.035	189.20	5.77	2.450 •	BG fluc. ~ 15%
18:22	0.39	0.042	206.67	6.902	2.292 st	able beam current
18:24	0.453	0.037	186.17	6.203	2.356	
18:26	0.389	0.042	207.029	6.205	2.360	

Damping rings

- DTC04 Lattice Evaluations
- Magnet Design & Layout Review

Damping rings cont'd

- EC Mitigations & Status
- Vacuum System Design/Costing
 - SuperKEKB VCs in production with similar designs to ILC DR
- SuperKEKB Dipole Chamber

DR Wiggler chamber concept with thermal spray clearing electrode – 1 VC for each wiggler pair.

Layout for Remote Target Handling

Positron capture

Water cooling and room temperature greatly simplifies the design

- Device sits in the vacuum
- All power and cooling connections move to the rim
 - Coils are kapton wound, hollow copper, water cooled
 - Plates are OFHC copper with water cooling pipes soldered in
 - Only metal in the high radiation areas
- Plates and coils stack and bolt together

Lawrence Livermore National Laboratory

Optiond/CR

ILC Baseline parameters

Centre-of-mass energy	E_{CM}	GeV	200	230	250	350	500
Luminosity pulse repetition rate		Hz	5	5 10 U	10 U	5	5
Positron production mode		10	10 Hz	10 Hz	10 Hz	nom.	nom.
Bunch population	N	$\times 10^{10}$	2	2	2	2	2
Number of bunches	n_b		1312	1312	1312	1312	1312
Linac bunch interval	Δt_b	ns	554	554	554	554	554
RMS bunch length	σ_z	μm	300	300	300	300	300
Normalized horizontal emittance at IP	$\gamma \epsilon_x$	μm	10	10	10	10	10
Normalized vertical emittance at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35
Horizontal beta function at IP	β_{x}^{*}	mm	16	14	13	16	11
Horizontal beta function at IP	β_{u}^{*}	mm	0.34	0.38	0.41	0.34	0.48
RMS horizontal beam size at IP	σ_{π}^{*}	nm	904	789	729	684	474
RMS horizontal beam size at IP	σ_u^*	nm	7.8	7.7	7.7	5.9	5.9
Vertical disruption parameter	D_{y}		24.3	24.5	24.5	24.3	24.6
Fractional RMS energy loss to beamstrahlung	δ_{BS}	%	0.65	0.83	0.97	1.9	4.5
Luminosity	L	$ imes 10^{34} { m cm}^{-2} { m s}^{-1}$	0.56	0.67	0.75	1.0	1.8
Fraction of L in top 1% E_{CM}	$L_{0.01}$	%	91	89	87	77	58
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_{\perp}	%	30	30	30	30	30
Electron relative energy spread at IP	$\Delta p/p$	%	0.20	0.19	0.19	0.16	0.13
Positron relative energy spread at IP	$\Delta p/p$	%	0.19	0.17	0.15	0.10	0.07

Detector Hall

- Cost
- Alignment
- Cryogenc systems

ILC Layout for TDR

Courtesy B. List

ILC Layout for TDR

Courtesy B. List

rf distribution

suitable for single tunnel layout

Klystron Cluster Scheme (SLAC)

Two Japanese candidate sites

New tunnel shape - suitable for Japan

RDR two tunnel design (2007)

TDR mountain sites

- rf distribution à la TDR (similar to European XFEL)
 - 10 MW klystron attached to 2 cryomodules

ILC possible timelines

Summary ILC

- Design for a 500 GeV machine will be published by the end of 2012
 - 200 < \sqrt{s} < 500 GeV with adequate luminosity
 - extendable to ~1 TeV, particularly with further progress in cavity gradient
 - including a cost update
 - not dissimilar to RDR value of 6.7bn ILCU (1 ILCU = \$1 US on 1.1.2007)
 - GDE will use purchasing power index to relate exchange rate development in different regions
- Such a machine could be built today.