National Research Nuclear University «Moscow Engineering Physics Institute»

# Optimization of the gamma - locator characteristics based on the SiPM

Student:Vorobyev K. A.Scientific adviser :Kantserov V. A.

Moscow 2012

## **Radiopharmacological γ - diagnostics**

- One of the main problems localization of the γ-rays sources in a biological object.
- γ-diagnostics used in the search of local tumor formations (seal). RFP (γ-source) is introduced into the body and concentrates in malignant tumors. γ-ray detector allows us to localize the place formation.
- One such possible devices can be designed as a detector for γ-rays.
- For these tasks a  $\gamma$ -ray detector in the energy range 60 ~ 600 keV is required.

Abstract.

The results of studies on the optimal scintillator - photodetector (SiPM) pair for gamma - locator device are presented.

The criterion is the maximum ratio of the signal / background for gamma - rays with energies in the range 60 ÷ 660 keV. The optimal pair consists of a scintillator LaBr3: Ce and SiPM firm HAMAMATSU.

The experimentally obtained signal / background ratio ~ 1000.

 $^{137}$ Cs &  $^{241}$ Am sources activity is ~  $10^5$  Bk.

Gamma - Locator - a medical device based on the SiPM for operative cancer diagnostics

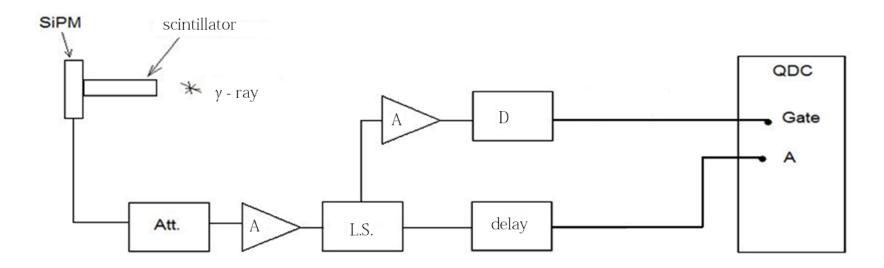
SiPM - Silicon photomultipliers

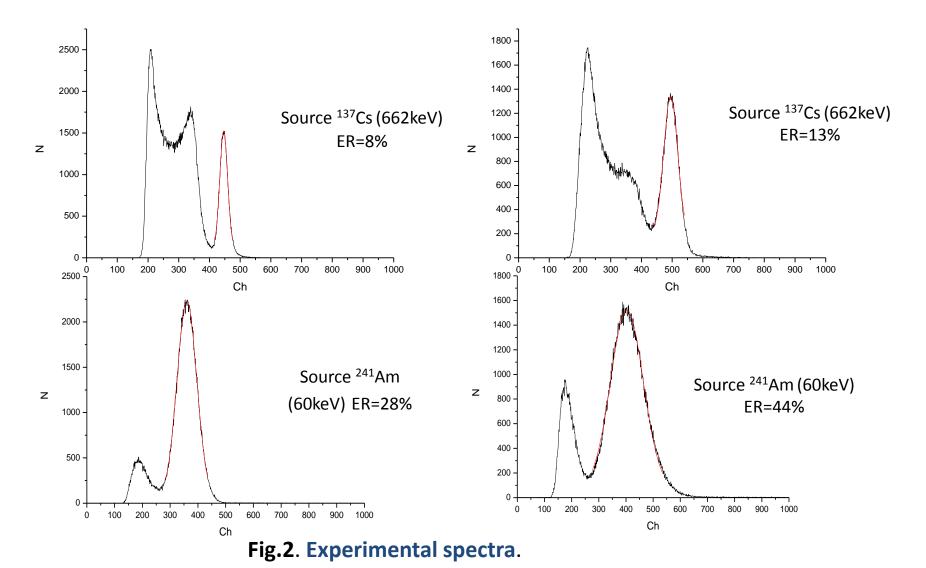
## We were investigating and made:

- choice of the optimal pair of scintillator + photodetector
- electronics assembly for the gamma rays detection in the energy range from 60 to 660 keV
- processing of the physical experiments data
- testing and debugging of the detector prototype

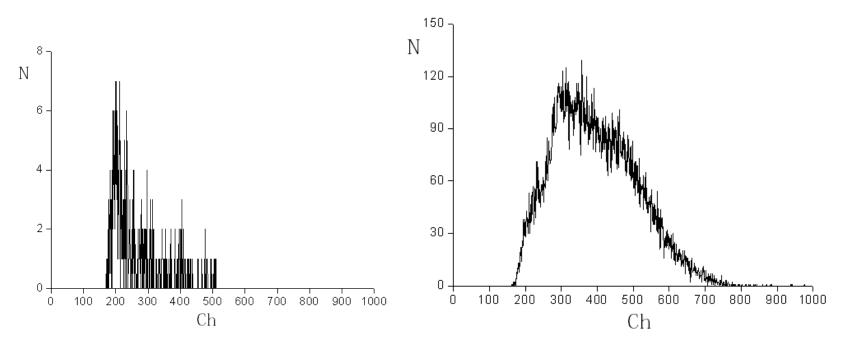
### **Experimental setup**

Fig.1. shows a diagram of the experimental setup the measurements were taken on.





Fig.1. SiPM- photodetector; scintillator– LYSO, LaBr3Ce; Att.attenuator; A.- amplifier; L.S.- linear splitter; D.- discriminator; QDC (Lecroy2249).

### Achieved experimental results


#### SiPM MPPC Hamamatsu 3x3 spectra;



LYSO scintillator;



## Background for LaBr<sub>3</sub>:Ce and LYSO scintillators.



Background for LaBr<sub>3</sub>:Ce scintillator

**Background for LYSO scintillator** 

•

| Photodetector         | crystal LaBr <sub>3</sub> :Ce |                  |                   |                  |
|-----------------------|-------------------------------|------------------|-------------------|------------------|
|                       | <sup>137</sup> Cs             |                  | <sup>241</sup> Am |                  |
|                       | ER,%                          | N1/N2(photopeak) | ER,%              | N1/N2(photopeak) |
| SiPM MPPC Hamamatsu   | 8                             | 3700             | 28                | 770              |
| SiPM MAPD-3 (Zecotek) | 16                            | 1070             | 45                | 414              |
| SiPM MEPhI            | 13                            | 2803             | 44                | 2718             |
| Photodetector         | crystal LYSO                  |                  |                   |                  |
|                       | <sup>137</sup> Cs             |                  | <sup>241</sup> Am |                  |
|                       | ER,%                          | N1/N2(photopeak) | ER,<br>%          | N1/N2(photopeak) |
| SiPM MPPC Hamamatsu   | 13                            | 13               | 44                | 977              |
| SiPM MAPD-3 (Zecotek) | 16                            | 16               | 52                | 605              |
| SiPM MEPhI            | 17                            | 11               | 56                | 1023             |

### GAMMA-LOCATOR PRACTICAL IMPLEMENTATION

A prototype of a compact device was designed and manufactured to work with the real short half life sources (Fig. 3); the detector itself (Fig. 4)

The measurement results shown on Fig. 5.6 allow us to estimate the accuracy of the  $\gamma$  - quanta source coordinates measurement.

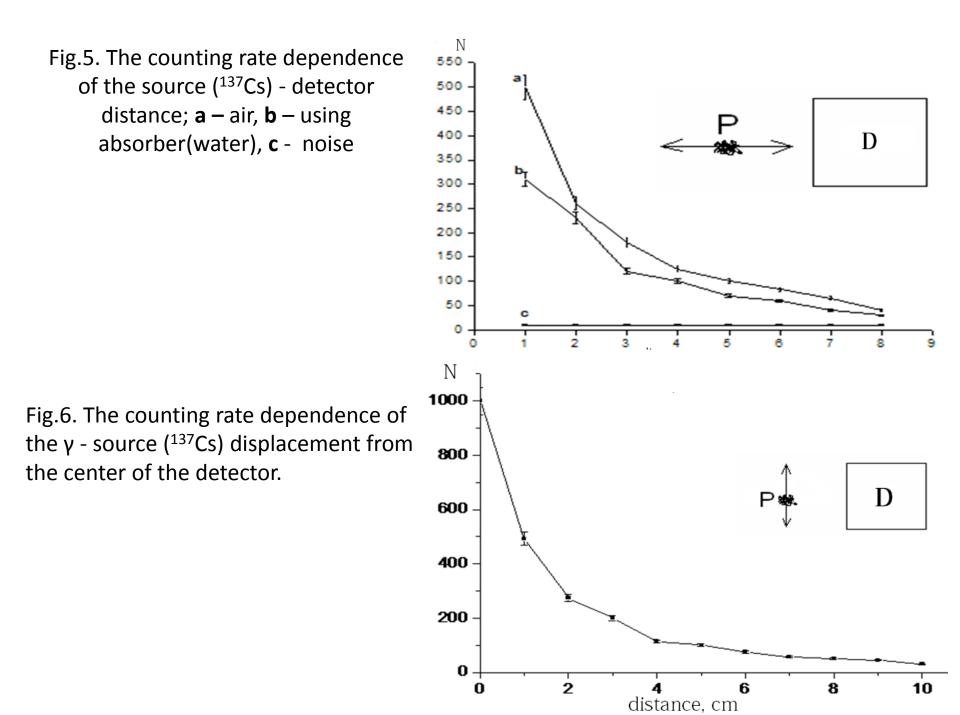

Measurements duration is 5 seconds. Collimator with 2 mm diameter was used.



Fig.3. Detector



Fig.4. Gamma-locator prototype



Conclusions :

Scintillator replacement on  $LaBr_3$ :Ce and using SiPM of HAMAMATSU firm allowed to improve the energetic resolution for  $\gamma$ -locator from 22% to 8%.

Source <sup>137</sup>Cs (662keV) ER=8% for LaBr3:Ce scintillator and Source <sup>137</sup>Cs (662keV) ER=13% LYSO scintillator.

Source <sup>241</sup>Am (60keV) ER=28% for LaBr3:Ce scintillator and Source 241Am (60keV) ER=44% LYSO scintillator.

Experimental data show that the noise level is much lower than the instruments useful signal. Signal / background (noise) ratio ~ 1000.

This research results achieved using sources with the activity much lesser than the ninety nine Technetium activity used in clinical practic. It is hoped that the signal / background ratio is much higher when dealing with the real short half-life source. Thanks for you time.