EPOS Model and Collective Flow in (a)p-p Collisions

Tanguy Pierog

K. Werner (SUBATECH, Nantes, France) and Iu. Karpenko (BITP, Kiev, Ukraine)

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

DESY, Hamburg, Germany

May the 11th 2012

High Energy Hadronic Interactions

General case : valid for pp if enough particles are produced !

Outline

EPOS model

- Introduction
- Primary interaction
 - Energy sharing
 - Parton multiple scattering
 - Outshell remnants
 - Screening, Shadowing and Strings
- Collective Effects
 - Real hydrodynamical calculation
 - Simplified (effective) scheme

MPI

Strings

Remnants

Collective effects

The EPOS Model

EPOS* is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

- Energy-sharing : for cross section calculation AND particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems

EPOS can be used for minimum bias hadronic interaction generation (h-p to A-B) from 100 GeV (lab) to 1000 TeV (cms) : used for air shower !

EPOS designed to be used for particle physics experiment analysis (SPS, RHIC, LHC) for pp or Heavy Ion

EPOS : History

- Evolution of models by K. Werner et al. :
 - ➡ VENUS (93) : soft physic
 - NEXUS 2 (00): first realization of Parton-Based Gribov-Regge Theory (PBGRT) with soft, semi-hard and hard Pomerons
 - NEXUS 3.97 (03) : enhanced diagrams in PBGRT and new remnant treatment.
 - EPOS 1.6 (06) : PBGRT + remnants + Effective treatment of higher order effect and high density effect + new diffraction ...
 - ➡ EPOS 1.99 (09) : Correction of cross section and inelasticity for air showers.
 - ➡ EPOS LHC (12) : Re-tune using LHC data and correction of effective flow.
 - EPOS 2 : 2010 ??? (still under development)
 - High mass diffraction
 - Real event by event hydro calculation (includ. pp)
 - Better parton distribution functions

Collective effect

Strings

Remnant

Strings

Remnants

Collective effects

EPOS : Parameters

Data used to constrain parameters (~100) :

- string fragmentation : e+e- data,
- hard Pomeron : DIS data,
- \rightarrow soft Pomeron and vertices : pp, π p,Kp, pA cross sections
- diffraction : pp low energy diffraction and multiplicity distributions
- excitation functions : multiplicity in pp from SPS to Tevatron,
- string ends and remnants : NA49 data
- collective and screening effects : RHIC and LHC

One set of parameters for all energies and system

not designed to be tuned by users

Gribov-Regge Based Models

Using Gribov-Regge (GR) : cross section from optical theorem :

$$\sigma_{ine}(\sqrt{s}) = \int d^2 b (1 - \exp(-G(\sqrt{s}, b)))$$

where G(energy, impact parameter) = elementary interaction

Multiple elementary scattering

 Probability for the number of elementary interactions (Pomeron) per event

Successful description of hadronic cross-sections But Energy conservation NOT considered between the elementary interactions G

No possibility to deduce directly particle production !

Particle Production in GR based Models

MPI

- Number of strings from GR
 - No energy conservation
- Energy sharing
 - Not consistent with cross-section
- String fragmentation
 - Proper energy conservation

Link between cross-section and particle production not consistent !

Parton-Based Gribov-Regge Therory* (PBGRT) developed to solve the problem : same formalisme for cross section and particle production used first in NEXUS and now in EPOS

* H.J. Drescher et al., Phys.Rep. 350:93-289 (2001)

DESY – May 2012

Parton-Based Gribov-Regge Theory

- Energy sharing at the cross section level
 - Energy shared between cut and uncut diagrams (Pomeron)
 - Reduced number of elementary interactions
 - Generalization to (h)A-B
 - Particle production from momentum fraction matrix (Markov chain metropolis)

T. Pierog, KIT - 9/51

Number of cut Pomerons

Fluctuations reduced by energy sharing (mean can be changed by parameters)

Strings

Remnants

Collective effects

EPOS : Pomeron definition

- Theory based Pomeron definion
 - pQCD based so large increase at small x (no saturation)
 - produce too high cross section
 - corrections needed using enhanced diagrams (triple Pomeron vertex)
 - effective coupling vertex

EPOS – high parton density effects

DESY – May 2012

T. Pierog, KIT - 12/51

Parton Distribution Function

PDF based and DGLAP and initial soft parametrization with corrections

T. Pierog, KIT - 13/51

IPI

Strings)

Remnants

Collective effects

Simplest case: e⁺e⁻ annihilation into quarks

ИЫ

Strings

Remnants

Test at LEP

Basic Distributions

DESY – May 2012

T. Pierog, KIT - 16/51

MPI

Strings

Remnant

Collective effects

Remnants

Forward particles mainly from projectile remnant

- At very low energy only particles from remnants
- At low energy (fixed target experiments) (SPS) strong mixing
- At intermediate energy (RHIC) mainly string contribution at mid-rapidity with tail of remnants.
- At high energy (LHC) only strings at midrapidity (baryon free)

Different contributions of particle production at different energies or rapidities

MPI

Strings

Remnant

Collective effects

Remnants

Free remnants in EPOS:

- from both diffractive or inelastic scattering
- excited state with $P(M) \sim 1/(M^2)^{\alpha}$
- very large contribution at low energy
- forward region at high energy
- depending on quark content and mass (excitation):
 - resonance
 - string
 - droplet (if #q>3)
 - string+droplet

Strings

Remnant

Collective effects

Remnants in PYTHIA

U

UU

D

D

d

In PYTHIA : valence quarks attached to main string

- limited quark exchange
- very hard baryon and meson spectra
- string fragmentation

UUD

р

forward particle limited by valence quarks

Π

UD

Baryons and Remnants

Parton ladder string ends :

Problem of multi-strange baryons at low energy (Bleicher et al., Phys.Rev.Lett.88:202501,2002)

Strings

Remnants

Collective effects

Baryon Production

DESY – May 2012

T. Pierog, KIT - 21/51

High Energy Hadronic Interactions

References : arXiv:1004.0805, arXiv:1010.0400, arXiv:1011.0375

Strings

Remnants

Collective effects

Collective effects

One decade of RHIC experiments (heavy ion, pp, and dAu scattering, up to 200 GeV)

heavy ion collisions produce matter which expands as an almost ideal fluid

 mainly because azimuthal anisotropies can be explained on the basis of ideal hydrodynamics (mass splitting etc)

LHC pp results: first signs for collective behavior as well ...

DESY – May 2012

T. Pierog, KIT - 23/51

Approach (1)

pp@LHC treated as Heavy Ion:

- Multiple scattering approach EPOS (marriage of pQCD and Gribov-Regge):
 - initial condition for a hydrodynamic evolution if the energy density is high enough
- event-by-event procedure
 - taking into the account the irregular space structure of single events :
 - ridge structures in two-particle correlations
- core-corona separation :
 - only a part of the matter thermalizes;
- ➔ 3+1 D hydro evolution
 - conservation of baryon number, strangeness, and electric charge

Approach (2)

- pp@LHC treated as Heavy Ion:
 - parton-hadron transition
 - realistic equation-of-state, compatible with lattice gauge results
 - cross-over transition from the hadronic to the plasma phase
 - hadronization,
 - Cooper-Frye, using complete hadron table
 - at an early stage (166 MeV, in the transition region)
 - with subsequent hadronic cascade procedure (UrQMD)

details see:

arXiv:1004.0805, arXiv:1010.0400, arXiv:1011.0375 (ridge in pp) arXiv:1203.5704 (jet-bulk interaction)

High Density Core Formation

Heavy ion collisions or very high energy proton-proton scattering:

the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently : core

EPOS

ΛΡΙ

Strings

Remnants

Collective effects

Energy Density

• Initial conditions at proper time $\tau = \tau_0$

Energy tensor :

$$T^{\mu\nu}(x) = \sum_{i} \frac{\delta p_{i}^{\mu} \delta p_{i}^{\nu}}{\delta p_{i}^{0}} g(x - x_{i}), \quad \delta p = \left\{ \frac{\partial X(\alpha, \beta)}{\partial \beta} \delta \alpha + \frac{\partial X(\alpha, \beta)}{\partial \alpha} \delta \beta \right\}$$

➡ Flavor flow :

$$N_q^{\mu}(x) = \sum_i \frac{\delta p_i^{\mu}}{\delta p_i^0} q_i g(x - x_i), \quad q \in \{u, d, s\}$$

Evolution according to the equations of ideal hydrodynamics:

$$\partial_{\mu}T^{\mu\nu} = 0$$
, using $T^{\mu\nu} = (\epsilon + p) u^{\mu}u^{\nu} - p g^{\mu\nu}$

$$\partial N_k^{\mu} = 0, \quad N_k^{\mu} = n_k u^{\mu},$$

with k = B, S, Q referring to respectively baryon number, strangeness, and electric charge.

Strings

Remnants

Collective effects

Check with Heavy Ions : AuAu@RHIC

- After checking successfully hundreds of particle spectra in AuAu
 - Event-by-event analysis

Event-by-Event Energy Density : AuAu

- Bumpy structure of energy density in transverse plane, but translational invariance
 - pseudorapidity extension of flux tubes

Event-by-Event Energy Density : AuAu

- Bumpy structure of energy density in transverse plane, but translational invariance
 - pseudorapidity extension of flux tubes

MPI

Strings

Remnants

Collective effects

Event-by-Event Radial Flow : AuAu

Leads to translational invariance of transverse flows

 \blacksquare give the same collective push to particles produced at different values of η_s at the same azimuthal angle

Collective effects

AuAu : Di-hadron correlation

- ridge-structure in the dihadron correlation $dN/d\Delta\eta d\Delta\phi$ for free

Au
Au 0-10%, $3 < p_t^{\rm trig} < 4 \, {\rm GeV/c}$ $2 < p_t^{\rm assoc} < p_t^{\rm trig}$

ЛЫ

Strings

Remnants

Collective effects

pp@7 TeV : Di-hadron correlation

Our calculation provides a similar ridge structure in pp@LHC using particles with 1 < pt < 3GeV/c, for high multiplicity events</p>

close in form and magnitude compared to the CMS result (5.3 times mean multipl., compared to 7 in CMS) Strings

Remnants

Collective effects

pp@7 TeV : no Hydro

Calculation without hydro => NO RIDGE

hydrodynamical evolution "makes" the effect! HOW?

Event-by-Event Energy Density : pp

- Random azimuthal asymmetries of initial energy density but translationally invariant
 - pseudorapidity extension of flux tubes

Initial energy density in the transverse plane for two different η_{s}

Event-by-Event Energy Density : pp

- Random azimuthal asymmetries of initial energy density but translationally invariant
 - pseudorapidity extension of flux tubes

Initial energy density in the transverse plane for two different η_{s}

Event-by-Event Radial Flow : pp

 Elliptical initial shapes leads to asymmetric flows as well translationally invariant (in η_s)

Radial flow velocity at a later time in the transverse plane

MPI

Strings

Remnants

Collective effects

Summary Ridge in pp

- Translational invariance of the flow asymmetry means:
 - The system gives an increased collective push
 - to particles produced at different values of ηs
 - ➡ at the same azimuthal angle corresponding to a flow maximum

- $\Delta \eta \Delta \phi$ correlation

Remnants

Collective effects

Pseudorapidity Distribution

Little effect of hydro in MinBias dn/deta

Strings

Remnants

Collective effects

Multiplicity Distribution

Little effect of hydro in MinBias dn/deta

Pt Distribution

→ Big effect for Pt distributions for high multiplicity events (here 900 GeV)

<p,> vs multiplicity ap-p@1.8 TeV : EPOS 2

Using small flux tube size

- Very good description of CDF data
- No additional parameter
- Hadron mass dependence

Strings

Remnants

Collective effects

Radius of Particle Emission

Space-time structure strongly affected (here 900 GeV)

Collective effects

Bose-Einstein Correlations

Consequences for Bose-Einstein correlations

ALICE data. Radii R from exponential fit. KT1= [100, 250], KT3= [400, 550], KT5= [700, 1000]

DESY – May 2012

MPI

Strings

Remnants

Collective effects

PbPb @ LHC

T. Pierog, KIT - 45/51

Strings

Remnants

Collective effects

jets in PbPb @ LHC

T. Pierog, KIT - 46/51

DESY – May 2012

Correlations in PbPb@LHC

Fourier coefficient for most central events

MPI

Strings

Remnants

Collective effects

EPOS LHC

Effective flow treatment

T. Pierog, KIT - 48/51

DESY – May 2012

MPI

Strings

Remnants

Collective effects

EPOS LHC

Effective flow treatment

DESY – May 2012

T. Pierog, KIT - 49/51

EPOS LHC

- Detailed description can be achieved
 - identified spectra
 - pt behavior driven by collective effects (statistical hadronization + flow)

Summary

Hadronic interactions with EPOS :

Consistent treatment for all kind of system : final state depends on the energy used for each event (multiplicity) not only on the energy available (collective hadronization when density of particles is high)

Hydro on event-by-event basis :

- for AuAu@RHIC or PbPb@LHC, explains naturally nontrivial features as "ridge" correlations, elliptical flow
- Explains some nontrivial pp results (ridge, BE correlations)

EPOS on-going developments :

- Test all Min Bias LHC data
- Improvement of hard events (jets) in MB
- Selection of hard processes (specific born Pt)
- Both at the same time : underlaying events
- Test with cosmic ray data

High Energy Hadronic Interactions

General case : valid for pp if enough particles are produced !

Thank you

Cross Section Calculation : EPOS

- PBGRT : Gribov-Regge but with energy sharing at parton level
- amplitude parameters fixed from QCD and pp cross section (semi-hard Pomeron)
- cross section calculation take into account interference term

$$\sigma_{\rm ine}(s) = \int d^2 b \left(1 - \Phi_{\rm pp}(1, 1, s, b)\right)$$

$$\Phi_{\rm pp}\left(x^+, x^-, s, b\right) = \sum_{l=0}^{\infty} \int dx_1^+ dx_1^- \dots dx_l^+ dx_l^- \left\{ \frac{1}{l!} \prod_{\lambda=1}^l -G(x_\lambda^+, x_\lambda^-, s, b) \right\}$$
$$\times F_{\rm proj}\left(x^+ - \sum x_\lambda^+\right) F_{\rm targ}\left(x^- - \sum x_\lambda^-\right).$$

can not use complex diagram with energy sharing: non linear effects taken into account as correction of single amplitude G

Particle Production in EPOS

m number of exchanged elementary interaction per event fixed from elastic amplitude taking into account energy sharing :

➡ m cut Pomerons from :

$$\Omega_{AB}^{(s,b)}(m,X^+,X^-) = \prod_{k=1}^{AB} \left\{ \frac{1}{m_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+,x_{k,\mu}^-,s,b_k) \right\} \Phi_{AB} \left(x^{\text{proj}},x^{\text{targ}},s,b \right)$$

m and X fixed together by a complex Metropolis (Markov chain)

→ 2m strings formed from the m elementary interactions

energy conservation : energy fraction of the 2m strings given by X

➡ consistent scheme : energy sharing reduce the probability to have large m

Consistent treatment of cross section and particle production: number AND distribution of cut Pomerons depend on cross section

Diffraction in PBGRT

- Using the same formalism
 - Diffraction from an additional diagram

- Same form as soft (Regge pole) but with different amplitude and width
- Low mass and high mass diffraction from the same diagram

- Parameters extracted from single diffractive (SD) cross-section
- Events with only "diff" type diagrams are diffractive

Strings

Low Mass Diffraction

Diffractive event = event with only cut diff. diagrams

Multiple cut-diff diagrams possible

2

10

► For each cut-diff diagram probability P_{dif} not to excite remnant

More cut-diff = more excitation : (1-Pⁿ_{dif})

σ_{SD} (mb)

10

5

0

10

Important in pA

No particle production directly from diagram

➡ P_{dif} (~0.25) fixes SD, DD (or elastic) probability.

10

energy (GeV)

10³

energy (GeV)

2

10

High Mass Diffraction

Work in progress

Remnants in EPOS

In EPOS : any possible quark/diquark transfer

Diquark transfer between string ends and remnants

Baryon number can be removed from nucleon remnant :

- Baryon stopping
- Baryon number can be added to pion/kaon remnant :
 - Baryon acceleration

Properties of Free Remnants

- Valence quark not necessarily connected to parton ladder :
 - Necessary to have $a\Omega/\Omega < 1$ (NA49 data)
 - Very broad remnant distribution
 - Can be used to describe effective enhanced diagrams (higher mass)
 - Very important for Cosmic Ray (leading particle)

Proton Xf Distribution

DESY – May 2012

T. Pierog, KIT - 60/51

Collective effects

Proton Xf Distribution

Leading proton

- Tests from 100 GeV lab to 300 GeV cms
- Very forward proton from ND events

E_{lab}=158 GeV NA49 data

MPI

Strings

Remnants

Baryon Spectra

- Large differences between models
- Need a new remnant approach for a complete description (EPOS)
- Problems even at low energy
- No measurement at high energy !

Without remnant string fragmentation has to be changed for baryon production

Baryons in Pion-Carbon

Very few data for baryon production from meson projectile, but for all :

- strong baryon acceleration (probability ~20% per string end)
- proton/antiproton asymmetry (valence quark effect)
- target mass dependence

Remnant contributions in LHCf

MPI

Strings

EoS

Hirano: QG & resonance gas => 1st order PT, PCE, $\mu_B = \mu_S = \mu_Q = 0$

- **Q3F:** QG & "complete" resonance gas => 1st order PT, excl volume correction, μ_B, μ_S, μ_Q considered, parameters as in Spherio
- **X3F:** crossover : $p = p_Q + \lambda (p_H p_Q), \ \lambda = \exp(-\frac{T Tc}{\delta})\theta(T T_c) + \theta(T_c T)$

"data": Y. Aoki, Z. Fodor, S.D. Katz , K.K. Szabo, JHEP 0601:089,2006

MPL

Strings

Remnants

AuAu : Lambda

DESY – May 2012

T. Pierog, KIT - 66/51

Strings

Remnants

Collective effects

Pt Distribution

Summarized in <Pt> versus multiplicity (here 900 GeV)

Pt distribution CDF ap-p@1.8 TeV with Hydro

Pt distribution CDF ap-p@1.8 TeV without Hydro

