

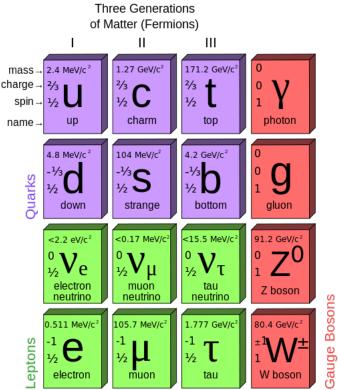
Karlsruher Institut für Technologie

Higgs Mechanism in Standard Model (I)

G. Quast, A. Raspereza Course "Higgs Physics"

Lecture 3, 03/05/2012

KIT – Universität des Landes Baden-Württemberg und


www.kit.edu

Nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Standard Model (Summary)

- Building blocks of Standard Model
 fermions : matter fields
 gauge bosons : force carriers
- Aesthetics of model :
 - classification of fields
 - U(1)⊗SU(2)⊗SU(3) symmetry
 → gauge interactions
- simple Lagrange formalism
 describes this very well but only for massless particles
- terms $m(ar{f_R}f_L+ar{f_L}f_R),~~M^2V^\mu V_\mu$ break SU(2) symmetry
- model is fairly consistent with experimental data assuming massive fermion and weak boson fields

 \Rightarrow needs gauge invariant mechanism of mass generation

Higgs Mechanism

Consider SU(2) doublet of scalar complex fields

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

	T_3	Y	Q
ϕ^+	+1/2	1	1
ϕ^0	-1/2	1	0

Higgs Mechanism

4-Dim sphere of minima

 $\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = v^2$

Ground state $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$

 $\operatorname{Im}(\phi)$

Higgs Mechanism

Higgs Lagrangian

$$\mathcal{L}_H = \left(\partial_\mu \Phi^\dagger\right) \left(\partial^\mu \Phi\right) - V(\Phi^\dagger \Phi)$$

"Radial" excitations of vacuum:

$$\Phi + \delta \Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$$
$$\Rightarrow \mathcal{L}_{H} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \lambda v^{2} H^{2} - \lambda v H^{3} - \frac{\lambda}{4} H^{4}$$

H(x) - physical state with mass $m_H = \sqrt{2\lambda v}$

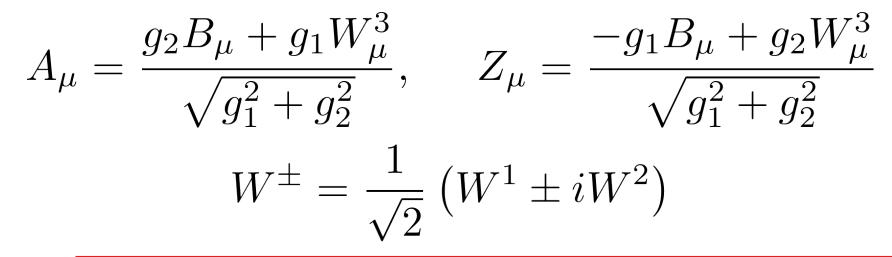
Higgs mechanism

Impose local gauge invariance

$$\left(\partial_{\mu}\Phi^{\dagger}\right)\left(\partial_{\mu}\Phi\right) \Rightarrow \left(\mathcal{D}_{\mu}\Phi^{\dagger}\right)\left(\mathcal{D}_{\mu}\Phi\right)$$

$$\mathcal{D}_{\mu} = \partial_{\mu} + ig_1 \frac{Y}{2} B_{\mu} + ig_2 \frac{1}{2} \vec{\sigma} \cdot \vec{W}$$

Consider ground state (vacuum)

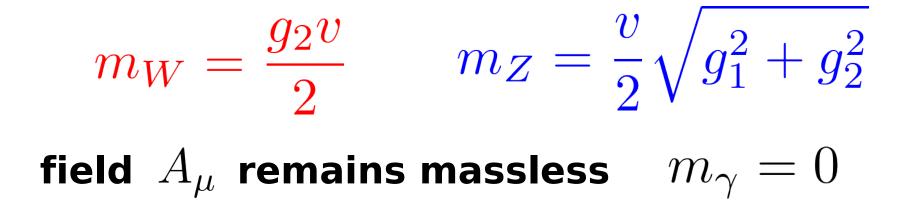

$$\left\langle \Phi \right\rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0\\ v \end{array} \right)$$

Generation of Gauge Boson Masses

The kinetic term in the Higgs Lagrangian

$$\left(\mathcal{D}^{\mu}\langle\Phi\rangle^{\dagger}
ight)\left(\mathcal{D}_{\mu}\langle\Phi
ight)
ight)$$

Recall :



$$\frac{1}{8}g_2^2v^2W_{\mu}^+W^{-,\mu} + \frac{1}{8}(g_1^2 + g_2^2)v^2Z_{\mu}Z^{\mu}$$

Generation of Weak Boson Masses

$$\frac{1}{8}g_2^2v^2W_{\mu}^+W^{-,\mu} + \frac{1}{8}(g_1^2 + g_2^2)v^2Z_{\mu}Z^{\mu}$$

These are W and Z boson mass terms!

W and Z bosons acquire masses through interaction with the Higgs ground state (vacuum)!

Generation of Fermion Masses

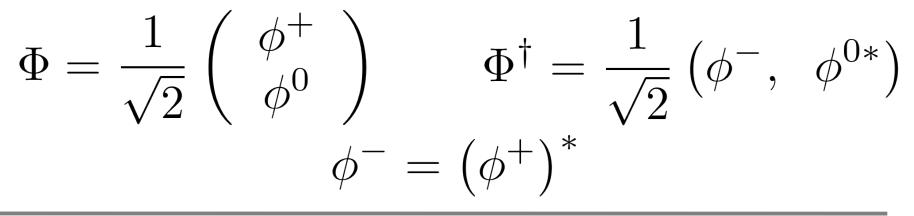
Fermion mass terms

$$m(\bar{f}_R f_L + \bar{f}_L f_R)$$

break SU(2) symmetry! Right-handed fermions transform as singlets

$$f_R' = f_R$$

Left-handed fermions transform as doublets


$$\begin{pmatrix} \nu'_L \\ \ell'_L \end{pmatrix} = \exp\left(i\frac{g_2}{2}\vec{\beta}\cdot\vec{\sigma}\right) \begin{pmatrix} \nu_L \\ \ell_L \end{pmatrix}$$

Yukawa Interactions

Yukawa interactions ⇒ interactions between fermions and Higgs doublet

corresponding gauge invariant Lagrangian (lepton sector) :

$$\mathcal{L}_{Y,\ell} = \mathcal{G}_{Y,\ell} \left(\bar{\ell}_R \Phi^{\dagger} L_L + \bar{L}_L \Phi \ell_R \right)$$
$$L_L = \begin{pmatrix} \nu_L \\ \ell_L \end{pmatrix} \qquad \bar{L}_L = (\bar{\nu}_L, \ \bar{\ell}_L)$$

Generation of Fermion Masses

Consider Yukawa interactions between ground Higgs state (vacuum) and leptons

 $\mathcal{L}_{Y,\ell} = \mathcal{G}_{Y,\ell} \left(\bar{\ell}_R \langle \Phi \rangle^{\dagger} L_L + \bar{L}_L \langle \Phi \rangle \ell_R \right)$

$$\Rightarrow \frac{v}{\sqrt{2}} \mathcal{G}_{Y,\ell} \left(\bar{\ell}_R \ell_L + \bar{\ell}_L \ell_R \right)$$

Mass terms generated!

Charged lepton mass is given by

$$m_{\ell} = \frac{v}{\sqrt{2}} \mathcal{G}_{Y,\ell}$$

Generation of Fermion Masses

 $\mathcal{G}_{Y,\ell}$ - Yukawa coupling of lepton ℓ to Higgs field

Masses of down-type quarks are generated in similar way

Masses of up-type quarks are generated via Yukawa interactions with charge conjugate Higgs doublet

$$\Phi^C = -i\sigma_2 \Phi^* = \begin{pmatrix} -\phi^{0*} \\ \phi^{-} \end{pmatrix}$$