Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

"Prejudice meets Reality" workshop Bonn, August 2012

Outline

- 1. Introduction
- $2. \ \ Status \ of \ the \ SM4$
- 3. Likelihood Ratio Tests
- 4. Numerical Computation of *p*-values
- 5. Conclusions

SM4 Matter Content

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

quarks:
$$\begin{pmatrix} u \\ d \end{pmatrix}$$
, $\begin{pmatrix} c \\ s \end{pmatrix}$, $\begin{pmatrix} t \\ b \end{pmatrix}$, $\begin{pmatrix} t' \\ b' \end{pmatrix}$
leptons: $\begin{pmatrix} e \\ \nu_e \end{pmatrix}$, $\begin{pmatrix} \mu \\ \nu_\mu \end{pmatrix}$, $\begin{pmatrix} \tau \\ \nu_\tau \end{pmatrix}$, $\begin{pmatrix} \ell' \\ \nu' \end{pmatrix}$

SM4 Parameters

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

masses: m_u , m_c , m_t , $m_{t'}$ Introduction m_d , m_s , m_b , $m_{b'}$ Status of the SM4 m_e , m_{μ} , m_{τ} , $m_{\ell'}$ Likelihood Ratio m_e , m_{μ} , m_{τ} , $m_{\ell'}$ Computation of p_{ν_e} , $m_{\nu_{\mu}}$, $m_{\nu_{\tau}}$, $m_{\nu'}$ ConclusionsCKM mixing angles: θ_{12} , θ_{13} , θ_{23} , θ_{14} , θ_{24} , θ_{34}

CKM phases: δ_{13} , δ_{14} , δ_{24}

PMNS matrix: the same again

p. 4

• The number of neutrino species can be determined from the Z line shape (LEP1) and is 2.9840 \pm 0.0082.

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

• The number of neutrino species can be determined from the Z line shape (LEP1) and is 2.9840 \pm 0.0082.

But: this only counts neutrinos with $m_{\nu} \ll M_Z/2$. Additional neutrinos with $m_{\nu'} > M_Z/2$ are not ruled out.

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

• The number of neutrino species can be determined from the Z line shape (LEP1) and is 2.9840 ± 0.0082 .

But: this only counts neutrinos with $m_{\nu} \ll M_Z/2$. Additional neutrinos with $m_{\nu'} > M_Z/2$ are not ruled out.

• PDG reviews claim since 1998 that a fourth generation is ruled out by electroweak precision observables (EWPOs).

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

• The number of neutrino species can be determined from the Z line shape (LEP1) and is 2.9840 ± 0.0082 .

But: this only counts neutrinos with $m_{\nu} \ll M_Z/2$. Additional neutrinos with $m_{\nu'} > M_Z/2$ are not ruled out.

• PDG reviews claim since 1998 that a fourth generation is ruled out by electroweak precision observables (EWPOs).

But: this statement is only true for degenerate fermion masses. (Since 2002 they say this explicitely.)

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Direct mass limits

- $t' \rightarrow bW$: $m_{t'} > 557 \text{ GeV}$ [arXiv:1203.5410]
- $b' \rightarrow tW$: $m_{b'} > 611 \text{ GeV}$ [arXiv:1204.1088]
- inclusive: $m_{t'}$, $m_{b'} \gtrsim 650 \text{ GeV}$ [CMS-PAS-EXO-11-098]

But: these limits depend on the decay mode.

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Electroweak Precision Observables

- Chiral fermions have couplings proportional to their mass
 - \Rightarrow they do not decouple from the theory when they are heavy.
- Electroweak precision observables (EWPOs) receive nondecoupling contributions from 4th generation fermions

$$\Delta S = \frac{1}{6\pi} \left(4 - \ln \frac{m_{t'}^2}{m_{b'}^2} + \ln \frac{m_{\nu'}^2}{m_{l'}^2} \right)$$

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Higgs signal strengths

- Higgs production via gluon fusion is enhanced by a factor of 9 due to extra heavy quarks in the loop.
- Br($H \rightarrow \gamma \gamma$) is reduced due to destructive interference with gauge boson loops.
- Higer order corrections are relevant for all search channels due to the large yukawa couplings. (Perturbativity?) [Denner, Dittmaier, Mück, Passarino, Spira, Sturm, Uccirati, Weber; arXiv:1111.6395]
- For m_{ν'} < m_H/2 the Higgs can decay invisibly into ν'ν̄'. This simultaneously reduces all other signal strengths. [Belotsky et al. (2003); Rozanov, Vysotsky (2010); Keung, Schwaller (2011); Cetin et al. (2011)]

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Global analysis

We performed a global fit of Higgs signal strengths and EWPOs within the SM4.

[Eberhardt, Herbert, Lacker, Lenz, Menzel, Nierste, M.W.; arXiv:1207.0438]

- EWPOs in the SM4 were calculated with ZFitter and the method from [Gonzalez, Rohrwild, M.W.; arXiv:1105.3434]. (Using *S*, *T* and *U* is inconsistent!)
- Higgs partial widths in the SM4 are calculated with HDECAY, which includes the higher order corrections from [Denner et al.; arXiv:1111.6395]
- We use post-ICHE2012 signal strengths $(H \rightarrow \gamma \gamma, ZZ, WW, \tau \tau$ from LHC and $H \rightarrow b\bar{b}$ from Tevatron).
- Quark masses were allowed to float between 600 and 800 GeV.

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Signal Strength Deviations

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

"Standard" Likelihood Ratio Tests

- Consider a "full" theory F with parameters x₁,..., x_n and chi-square function \(\chi_F(x_1,...,x_n)\).
- Consider a "constrained" theory C obtained from F by fixing the last k parameters (k < n). The chi-square function is

$$\chi^2_C(x_1,\ldots,x_{n-k}) = \chi^2_F(x_1,\ldots,x_{n-k},0,\ldots,0)$$

• Minimize both chi-square functions and compute

$$\Delta \chi^2 = \chi^2_{C,min} - \chi^2_{F,min}$$

• The statistical significance (*p*-value) is (Wilk's theorem)

$$p = 1 - \underbrace{P_{k/2}(\frac{1}{2}\Delta\chi^2)}_{k/2} = 1 - \operatorname{Prob}(k, \Delta\chi^2)$$

normalised lower incomplete Gamma function

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

"Standard" Likelihood Ratio Tests

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Conclusions

This does not work for SM3 vs. SM4.

You cannot fix the parameters of the SM4 so that you re-obtain the SM3.

"General" Likelihood Ratio Tests

- Consider two unrelated Theories A and B with chi-square functions χ²_A and χ²_B.
- Fit both Theories to the measured observables \vec{O} and compute

$$\Delta \chi^2(\vec{O}) = \chi^2_{A,\min}(\vec{O}) - \chi^2_{B,\min}(\vec{O}) \quad .$$

- Generate a large sample of toy measurements \vec{O}'_i distributed about the best-fit prediction of theory A (the null hypothesis) according to their errors.
- Fit both theories for each set of toy measurements and compute

$$\Delta\chi^2(ec{O}_i') = \chi^2_{A,\min}(ec{O}_i') - \chi^2_{B,\min}(ec{O}_i')$$

• The statistical significance (of theory A) is the fraction of toy measurements with $\Delta \chi^2(\vec{O}'_i) > \Delta \chi^2(\vec{O})$.

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

"General" Likelihood Ratio Tests

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Conclusions

Drawback: for small *p*-values you have to do a lot of fits.

 \Rightarrow Can this method be improved?

•true values $\hat{\vec{O}}$

•measured values \vec{O}

 O_2

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Conclusions

 O_1

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

 Q_2

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

measured values \vec{Q} null hypothesis $\hat{ec{Q}}$ M_F M_C

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

measured values \vec{Q} $\sqrt{\Delta \chi^2}$ null hypothesis $\hat{ec{Q}}$ M_F M_C

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

 $\sqrt{\Delta\chi^2}$ M_F M_C

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

 \vec{Q}' \vec{Q}'_3 \vec{Q}_2' M_F \vec{Q}'_1 M_C

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Applicability of Wilk's Theorem

Wilk's theorem applies if

- the errors are gaussian
- the theory manifolds are
 - nested
 - approximately flat
 - unbounded

Otherwise, we need numerical simulations.

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Applicability of Wilk's Theorem

Wilk's theorem applies if

- the errors are gaussian
- the theory manifolds are
 - nested
 - approximately flat
 - unbounded

Otherwise, we need numerical simulations.

Strategy: optimise numerical simulations for the case where Wilk's theorem applies.

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Monte Carlo Method

We need the integral

$$p = \int d^n \vec{Q}' f(\vec{Q}')$$
 , $f(\vec{Q}') = \pi(\vec{Q}') \theta(\Delta \chi^2(\vec{Q}') - \Delta \chi^2(\vec{Q}))$

(For gaussian errors: $\pi(\vec{Q'}) = (2\pi)^{-n/2} e^{-|\vec{Q'}|^2/2}$)

- Choose a probability density function ρ which is as similar to f as possible.
- Generate N random sample points Q
 [']_i distributed according to ρ.
- The integral is

$$p \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(\vec{Q}'_i)}{\rho(\vec{Q}'_i)}$$

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

٠

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

How to choose ρ

• Simple choice

$$\rho(\vec{Q}') = \pi(\vec{Q}') = (2\pi)^{-n/2} e^{-|\vec{Q}'|^2/2}$$

• Better choice which avoids the "inner region":

$$\rho(\vec{Q'}) = e^{-\frac{1}{2}|\vec{Q'}_1 + \vec{Q'}_3|^2} \begin{cases} a|\vec{Q'}_2|^{\alpha} & , & |\vec{Q'}_2|^2 < \Delta\chi^2(\vec{Q}) \\ be^{-\frac{1}{2}|\vec{Q'}_2|^2} & , & |\vec{Q'}_2|^2 \ge \Delta\chi^2(\vec{Q}) \end{cases}$$

- Speedup of a factor 100 to 1000 in realistic situations.
- For further details see [M.W.; arXiv:1207.1446].

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

.

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Non-nested Models

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

$$\rho(\vec{Q}') = e^{-\frac{1}{2}|\vec{Q}_1' + \vec{Q}_2'|^2} \begin{cases} a|\vec{Q}_3'|^{\alpha} & , \quad |\vec{Q}_3'|^2 < \Delta\chi^2(\vec{Q}) + |\vec{C} - \vec{Q}_2'|^2 \\ be^{-\frac{1}{2}|\vec{Q}_3'|^2} & , \quad |\vec{Q}_3'|^2 \ge \Delta\chi^2(\vec{Q}) + |\vec{C} - \vec{Q}_2'|^2 \end{cases}$$

Introducing myFitter

These strategies for numerical computations of *p*-values were implemented in the public code *my*Fitter.

- It is a C++ class library.
- It allows implementation of arbitrary models and likelihood functions (via polymorphism).
- It supports parallel adaptive Monte Carlo integration by linking to the Dvegas/OmniComp package (N. Kauer).
- It comes with complete documentation and uses the GNU build system.
- The implementation is explained in [M.W.; arXiv:1207.1446].
- It is available at http://myfitter.hepforge.org.

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values

Application to the SM4

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

 \Rightarrow The SM4 is ruled out with a *p*-value of 5.7 \cdot 10⁻⁸ (5.4 σ).

p. 21

Conclusions

- The SM4 struggles to produce the Higgs signal strengths measured at LHC and Tevatron.
- To compute a *p*-value for the SM4 one has to perform a likelihood ratio test for non-nested models (because of the non-decoupling nature of SM4 fermions).
- I presented a general method for numerical computations of *p*-values in likelihood ratio tests for nested and non-nested models.
- The method has been implemented in the public code *my*Fitter (http://myfitter.hepforge.org).
- Using post-ICHEP2012 signal strengths, $H \rightarrow b\bar{b}$ from Tevatron and $m_{t',b'} > 600 \text{ GeV}$ the SM4 is ruled out at 5.4 σ .

Likelihood Ratio Tests for Non-nested Models: the Case of the SM4

Martin Wiebusch

Introduction

Status of the SM4

Likelihood Ratio Tests

Numerical Computation of *p*-values