"Prejudice meets Reality" Helmholtz workshop, September 20-22, Bonn

Multivariate Analysis Methods and Boosted Decision Trees

Eckhard von Toerne University of Bonn

- What is a multivariate Method?
- Example: Boosted Decision Trees
- The TMVA Toolkit
- TMVA tutorial

Literature:

T.Hastie, R.Tibshirani, J.Friedman, "The Elements of Statistical Learning", Springer 2001 C.M.Bishop, "Pattern Recognition and Machine Learning", Springer 2006

Software packages for Multivariate Data Analysis/Classification:

Individual classifier software:

•e.g. "JETNET" C.Peterson, T. Rognvaldsson, L.Loennblad,

•NeuroBayes®

•many, many other packages!

"Complete" packages

StatPatternRecognition: I.Narsky, arXiv: physics/0507143 http://www.hep.caltech.edu/~narsky/spr.html

TMVA: Hoecker, Speckmayer, Stelzer, Therhaag, von Toerne, Voss, arXiv: physics/0703039, <u>http://tmva.sf.net</u> or every ROOT distribution

Huge data analysis library available in "R": <u>http://www.r-project.org/</u>

What is a multivariate method?

Eckhard von Törne

Searches for New Physics

universitätbonn What is a multi-variate analysis

- "Combine" all input variables into one output variable
- Supervised learning means learning by example: the program extracts patterns from training data
- Methods for un-supervised learning → not common in HEP and not covered in this lecture

Universitätbonn Classification/Regression Classification of signal/background – How to find best decision boundary?

Regression – How to determine the correct model?

- Simplest multi-variate classification method: Cuts
- Signal region is defined by a series of cuts:
 - Var1 > x1
 - Var2 < x2 ...

- However not necessarily the easiest approach
 - Cuts have difficulties if variables have low separation power and many variables are involved
- Whenever cut selections are employed, more sophisticated multi-variate methods may also work

Varying y(x)>"cut" moves working point (efficiency and purity) along ROC curve

How to choose "cut"? \rightarrow need to know prior probabilities (S, B abundances)

- Measurement of signal cross section: maximum of S/ $\sqrt{(S+B)}$ or equiv. $\sqrt{(\epsilon \cdot p)}$
- Discovery of a signal : maximum of $S/\sqrt{(B)}$
- Precision measurement: high purity (p)
- Trigger selection: high efficiency (ε)

How to choose a method?

- If you have a training sample with only few events?
 - → Number of "parameters" must be limited
 - → Use Linear classifier or FDA, small BDT, small MLP
- Variables are uncorrelated (or only linear corrs) \rightarrow likelihood
- I just want something simple \rightarrow use Cuts, LD, Fisher
- Methods for complex problems \rightarrow use BDT, MLP, SVM

List of acronyms:

BDT = boosted decision tree, see manual page 103

ANN = articifical neural network

MLP = multi-layer perceptron, a specific form of ANN, also the name of our flagship ANN, manual p. 92

- FDA = functional discriminant analysis, see manual p. 87
- LD = linear discriminant, manual p. 85
- SVM = support vector machine, manual p. 98, SVM currently available only for classification
- Cuts = like in "cut selection", manual p. 56
- Fisher = Ronald A. Fisher, classifier similar to LD, manual p. 83

universitätbonn Artificial Neural Networks

- Modelling of arbitrary nonlinear functions as a nonlinear combination of simple "neuron activation functions"
- Advantages:
 - very flexible,
 no assumption
 about the function
 necessary
- Disadvantages:
 - "black box"
 - needs tuning
 - seed dependent

Performance		Speed		Robustness		Curse of Dim.	Transparency	Regression	
No/linear correlations	Nonlinear correlations	Training	Response	Overtraining	Weak input vars			1D	multi D
\odot	\odot		C			æ	8	\odot	\odot

Boosted Decision Trees

Eckhard von Törne

Boosted Decision Trees

<u>Decision Tree:</u> Sequential application of cuts splits the data into nodes, where the final nodes (leafs) classify an event as signal or background

Single trees were used in general "datamining" applications, less known in (High Energy) Physics

similar to "simple Cuts": each leaf node is a set of cuts. → many boxes in phase space attributed either to signal or background.

independent of monotonous variable transformations, immune against outliers

weak variables are ignored (and don't (much) deteriorate performance)

Boosted Decision Trees (1996): combine a whole forest of Decision Trees, derived from the same sample, e.g. using different event weights.

→ became popular in HEP since MiniBooNE, B.Roe et.a., NIM 543(2005)

Why no multiple branches (splits) per node?

Fragments data too quickly; also: multiple splits per node = series of binary node splits

universitätbonn Adaptive Boosting (AdaBoost)

AdaBoost re-weights events misclassified by previous classifier by:

$$\frac{1-f_{err}}{f_{err}} \text{ with :}$$

$$f_{err} = \frac{\text{misclassified events}}{\text{all events}}$$

AdaBoost weights the classifiers also using the error rate of the individual classifier according to:

$$y(x) = \sum_{i}^{N_{Classifier}} log\left(\frac{1 - f_{err}^{(i)}}{f_{err}^{(i)}}\right) C^{(i)}(x)$$

Boosting at Work

universitätbonn

Boosting seems to work best on "weak" classifiers (i.e. small, dum trees) Tuning (tree building) parameter settings are important For good out of the box performance: Large numbers of very small trees

A non-HEP example for a multivariate classification task

Pattern Recognition of handwritten digits

 Automatic reading of handwritten digits for Zip-code processing in mail services (Postleitzahlerkennung)

 One MVA methods for each digit: one digit is Signal, everything else is Background

- Input values: brightness of each individual pixel
 - \rightarrow need to reduce number of pixels
 - \rightarrow preprocessing necessary

Handwritten digits/letters

- Preprocessing:
 - [step 1] Find frame around digit, determine aspect ratio
 - [step 2] Transform to aspect ratio=1
 - [step 3] Merge pixels into 8x8 array
 - Input to multivariate analysis: 64 pixels plus the original aspect ratio

- Boosted Decision Trees with gradient boost (3000 trees)
- Training: One digit is signal, all others are background
- Data sample:
 - MNIST database: 60k training digits, 10k test
 - (<u>http://yann.lecun.com/exdb/mnist/</u>)
 - Strict separation of test and training sample
 - persons contributing to training sample do NOT contribute to test sample (and vice versa).

Pattern Recognition of handwritten digits

Example: stepwise morphing of "2" into "8"

Output digit determined by MVA with largest output value

TMVA Toolkit for MultiVariate Analysis

Eckhard von Törne

What is TMVA

- Supervised learning
- Classification and Regression tasks
- Easy to train, evaluate and compare various MVA methods
- Various preprocessing methods (Decorr.,PCA, Gauss...)
- Integrated in ROOT

TMVA references

- -Web-Site: http://tmva.sourceforge.net/
- See also: "TMVA Toolkit for Multivariate Data Analysis, A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E.v.Toerne, H. Voss et al., <u>arXiv:physics/0703039v5</u> [physics.data-an]
- Extensively used by both ATLAS and CMS

TMVA workflow

- Training:
 - Classification:
 - Learn the features of the different event classes from a sample with known signal/background composition
 - Regression:
 Learn the functional dependence
 between input variables and targets
- Testing:
 - Evaluate the performance of the trained classifier/regressor on an independent test sample
 - Compare different methods
- Application:
 - Apply the classifier/regressor to real data

universitätbonn Customizing the method via the option string BDT option table (from manual)

8.12 Boosted Decision and Regression Trees

Method booking

factory->BookMethod(
 TMVA::Types::kBDT, "myBDT",
 "BoostType=Grad:SeparationType=
 GiniIndex:Ntrees=500");

- Read description of method in the manual.
- Choose the number of defining parameters according to data size and number of variables.

Option	Array	Default	Predefined Values	Description			
NTrees	877	200	272	Number of trees in the forest			
BoostType	-	AdaBoost	AdaBoost, Bagging, RegBoost, AdaBoostR2, Grad	Boosting type for the trees in the forest			
AdaBoostR2Loss		Quadratic	Linear, Quadratic, Exponential	Loss type used in AdaBoostR2			
UseBaggedGrad	1	False		Use only a random subsample of a events for growing the trees in each it eration. (Only valid for GradBoost)			
GradBaggingFraction	-	0.6		Defines the fraction of events t be used in each iteration whe UseBaggedGrad=kTRUE.			
Shrinkage	722	1		Learning rate for GradBoost alg rithm			
AdaBoostBeta	122	1	3 <u>1-</u> 3	Parameter for AdaBoost algorithm			
UseRandomisedTrees	-	False		Choose at each node splitting a ran dom set of variables			
UseNvars	1	4		Number of variables used if ran domised tree option is chosen			
UseNTrainEvent		N		Number of Training events used in each tree building if randomised tree option is chosen			
UseWeightedTrees	-	True		Use weighted trees or simple average in classification from the forest			
UseYesNoLeaf	-	True		Use Sig or Bkg categories, or the pu rity=S/(S+B) as classification of th leaf node			
NodePurityLimit -		0.5		In boosting/pruning, nodes with pu rity > NodePurityLimit are signa background otherwise.			
Separat ionType	-	Gini Index	CrossEntropy, GiniIndex, GiniIndexWithLapl MisClassification SDivSqrtSPlusB, RegressionVarianc	Separation criterion for node splitting ace, Error,			

Option Table 21: Configuration options reference for MVA method: *BDT*. Values given are defaults. If predefined categories exist, the default category is marked by a ' \star '. The options in Option Table 9 on page 59 can also be configured. The table is continued in Option Table 22.

107

A complete TMVA training/testing session

void TMVAnalysis()

universitätbon

TFile* outputFile = TFile::Open("TMVA.root", "RECREATE");

TMVA::Factory *factory = new TMVA::Factory("MVAnalysis", outputFile,"!V");

TFile *input = TFile::Open("tmva_example.root");

factory->AddVariable("var1+var2", 'F'); factory->AddVariable("var1-var2", 'F'); //factory->AddTarget("tarval", 'F'); Add variables/ targets

Create Factory

TTree* dataTree = (TTree*) input->Get("TreeS"); double coeffA = 1.0, coeffB = 0.34 coeffC = ...; //set coefficients Initialize Trees factory->AddTree (dataTree, "Signal", 1., "m> signalLow && m<signalHigh"); // Region A factory->AddTree (dataTree, "Background", weightB, "m> bg1Low && m<bg1High"); // Region B factory->AddTree (dataTree, "Background", weightC, "m> bg2Low && m<bg2High"); // Region C

factory->PrepareTrainingAndTestTree("", "", "NormMode=None");

factory->BookMethod(TMVA::Types::kMLP, "MLP", "!V:NCycles=200:HiddenLayers=N+1,N:TestRate=5");

factory->TrainAllMethods(); factory->TestAllMethods(); factory->EvaluateAllMethods(); outputFile->Close();

delete factory;

Book MVA methods

How to obtain signal and background samples for training

Universitätbonn Signal and background samples for training

- What works for a counting analysis usually works for a MVA too.
- Examples:
 - Monte Carlo
 - Sidebands (also ABCD method)
 - Event Crossing

Example Analysis Sideband method

universitätbonn Sideband method with TMVA

The tutorial

Bonn, 22. Oktober 2007

Eckhard von Törne

34

universitätbonn Exercise 1: Getting started

- Go to tutorial web page <u>http://www.uni-bonn.de/~etoerne/tmva/</u>
- cd \$HOME
- cp -r \$ROOTSYS/tmva/test/ tmvatest
- cd tmvatest
- Run TMVAClassification.C and TMVAClassificationApplication.C
- All information+data provided on the web page

- Classification Analysis on Data "testData.root" on the tutorial page
- 3-dimensional data with complex signal and flat background
- Task: Find best classification result (BDT vs. Likelihood)

- Regression analysis: estimate of observable (target) based on input variables.
- data represent measurements in a toy-calorimeter.
- target to be estimated: energy of calo cluster.
- Calorimeter is segmented
 - five thin layers ("EM-CALO")
 - followed by eight thicker layers
- Calorimeter is imperfect
 - leakage at the end of the calorimeter
 - dead regions
 - non-compensation.
- data are from jets and single particles.
- Always one cluster per event.

- Variables:
 - Energy in each layer: e0, e1, … e12. (Given in GeV)
 - Sum over all layers: esum
 - The true energy deposition: etruth
 - Cluster center-of-gravity in eta: eta, and phi: phi
 - Cluster centroid in layer 0 in eta and phi: eta0, phi0
- Either use etruth or etruth/esum as target.

- Average ratio < etruth/esum > = 1.06
- Standard deviation of ratio etruth/esum = 0.175
- Regression-estimate (std-dev of estimate truth) should be much less than 0.175.

MVA methods for regression

Several TMVA methods are still under development for regression

For this exercise, consider to use:

- MLP with BFGS training (option TrainingMethod=BFGS)
- BDT with BoostMethod=Grad
- PDEFoam
- FDA

universitätbonn

Regression macros

Average Quadratts Deviation versus Method for larget 0 Die 1an Jan Option Date Average Quadratic Deviation versus Method for target 0 TMVA Training Sample, Average Deviation Training Sample, truncated Average Dev. (best 90%) Test Sample, Average Deviation Test Sample, truncated Average Dev. (best 90%) target 14 Average Deviation = $\left(\sum \left(f_{MVA} - f_{target}\right)^2\right)^{1/2}$ 5 40.12 Deviation 0.1 0.08 0.06 MLP BDT Method

TMVARegGui.C

🔀 TMVA Plotting Macros for Regression 🛛 💿 🛞									
(1a) Input variables and target(s) (training sample)									
(1b) Input variables and target(s) 'Norm'-transformed (training sample)									
(2a) Input variable correlations (scatter profiles)									
(2b) Input variable correlations 'Norm'-transformed (scatter profiles)									
(3) Input Variable Linear Correlation Coefficiente									
(4a) Regression Output Deviation versus Target (test sample)									
(4b) Regression Output Deviation versus Target (training sample)									
(4c) Regression Output Deviation versus Input Variables (test sample)									
(4d) Regression Output Deviation versus Input Variables (training sample)									
(5) Summary of Average Regression Deviations									
(6a) Network Architecture									
(6b) Network Convergence Test									
(7) Plot Foams									
(8) Regression Trees (BDT)									
(9) Regression Tree Control Plots (BDT)									

(10) Quit

BACKUP

universitätbonn Performance with toy data

- 3-dimensional distribution
 - Signal: sum of Gaussians
 - Background=flat
- Theoretical limit calculated using Neyman-Pearson Lemma
- Neural net (MLP) with two hidden layers and backpropagation training. Bayesian option has little influence on high statistics training
- TMVA-ANN converges towards theoretical limit for sufficient Ntrain (~100k)

universitätbonn TMVA stand-alone vs. TMVA in ROOT

Using TMVA stand-alone: the TMVA in ROOT is ignored. The tmva/test directory may serve as an example setup. Do not forget to run setup.sh

- Using TMVA in ROOT: use ROOT's include and library pathes, need to modify tmva/test/Makefile
 - Erase all reference to stand-alone include directories
 - Replace I TMVA.1 by I TMVA
 - You no longer need to run setup.sh
 - No changes for using macros (do not source setup.sh)

This tutorial: We will use TMVA in ROOT

TMVA version 4.1.3, (the version included in ROOT 5.34)

No Single Best Classifier.

Criteria		Classifiers								
		Cuts	Likeli- hood	PDERS / k-NN	H-Matrix	Fisher	MLP	BDT	RuleFit	SVM
Perfor- mance	no / linear correlations	(\odot		()	\odot	\odot		\odot	\odot
	nonlinear correlations	()	8	\odot	8	$\overline{\mathbf{S}}$	\odot	\odot		\odot
Speed	Training	8			C	\odot	(\bigotimes	(8
	Response			8/3	C	\odot	\odot	(e	(
Robust -ness	Overtraining	0	((\odot	\odot	8	8	((
	Weak input variables		()	8	C	\odot	((((
Curse of dimensionality		8	\odot	8	\odot		(\odot	((
Transparency		\odot	\odot	()	\odot	\odot	8	8	8	8