From A to Z: examining a SUSY analysis in detail

Physics at the Terascale, August 20-24, 2012, Bonn Prejudice meets reality: setting limits at the LHC and global fits of LHC data and other measurements AT LAS

Till Eifert (SLAC)

Outline

- Designing a SUSY Search
 - direct stop prod. in I-lep + jets + ETmiss channel,
 - signal optimization,
 - background estimation,
 - statistical modeling
 - discovery & exclusion fits
- Making the results useful for externals
 - What is provided
 - How to use it

Stop search in the Ilepton channel

Example SUSY search:

pre-print: <u>http://arxiv.org/abs/1208.2590</u> paper submitted to PRL

Direct stop pair prod.

stop means stop1 here

Several decay possibilities for the stop:

- I. stop to top + neutralino I
- 2. stop to b + chargino l
- 3. stop to top + neutralino2

etc.

Decay depends on M(stop), M(other SUSY particles), stop mixing (handedness).

Assumptions of this search:

- M(stop) > M(top)
- stop I mostly right-handed (i.e. large stop mixing)
- Decay to top + neutralino I

Direct stop pair prod.

stop means stop1 here

Based on the number of isolated electrons+muons (leptons), the events are categorized in three independent channels:

- zero-lepton (both Ws decay hadronically)
- one-lepton (shown above)
- two-lepton (both Ws decay leptonically)

The final results can be statistically combined again.

Signal

Direct stop pair prod.

stop means stop1 here

Detector signature: ttbar + extra E_T^{miss}

here: I-lepton + 4-jets (2-bjets) + E_T^{miss}

Till Eifert -- WS on limit setting and global fits in the LHC era

Signal

Signal characteristics

2 parameters: stop, LSP (neutralino1) masses

Key characteristics:

- **small** Δm (close to diagonal)
 - small phase-space available
 - top and LSP have little momentum
 - less E_T^{miss}, less boosted jets, lepton
 - in limit of diagonal, looks identical to SM ttbar
- big ∆m
 - all objects have more momentum
 - in particular higher E_T^{miss}

```
~0.2pb @ m<sub>stop</sub>=400GeV
```

~0.01pb @ m_{stop}=600GeV

Till Eifert -- WS on limit setting and global fits in the LHC era

^{~10}pb @ m_{stop}=200GeV

Discriminate Signal from background (1)

channel

efines

σ

lower Nje

reject most

W+jet

small S/B

- Require exactly one isolated lepton (electron or muon)
 - pT threshold, isolation, PID
- Require \geq 4 jets
 - jet algorithm, pT threshold, eta acceptance, pileup,
- Require ≥ 1 b-tagged jets (bjet)
 - tagging algorithm, working point, pT cut

Dominant background ttbar (semi-lep)

Optimize search:

- kinematic selection
 - jet multiplicity (what jets)
 - bjet(s) -- suppress W+jets
 - more variables (next slide)
- MC backgrounds, signal models (grid)
- figure of merit: ~significance
 - with systematics

Discriminate Signal from background (II)

Transverse mass (lepton, pTmiss) > 120 GeV

Dominant background full-lep ttbar, where 2nd lepton is not identified, out of acceptance, or a hadronically decaying tau.

- Reconstruct hadronic top mass (Mjjj) to specifically reject full-lep ttbar background
- E_T^{miss}, E_T^{miss}/sqrt(HT)
- Azimuthal angle between jets and pTmiss

Optimize search:

- signal selection
 - discrimination power,
 - correlations,
 - MC modeling (robustness)

Optimization

Optimize search:

Entries / 25 GeV

0

- cover various signal models (low and high stop mass, etc.)
 - define several (overlapping) selections
 - Look-elsewhere-effect (discovery)
 - For exclusion limit: use best-expected selection for each signal model point

Requirement	SR A	SR B	SR C	SR D	SR E	
$E_{\rm T}^{\rm miss}$ [GeV] >	150	150	150	225	275	
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	7	9	11	11	11	
$m_{\rm T} [{\rm GeV}] >$	120	120	120	130	140	

simple cut-and-count experiment; shape information not (yet) used

Background estimation (1)

Dominant background: ttbar

- Normalize MC prediction in orthogonal control region(s);
- ▶ rely on MC for extrapolating to signal region, i.e. MC "shape" is used;
- significantly reduces those systematics which affect signal and control regions similarly.

Entries / 25 GeV Data 2011 (vs = 7 TeV) ATLAS Standard Model (SM) 10³ multijets (data estimate) $dt = 4.7 \text{ fb}^{-1}$ V+jets, VV 10' tt+V, single top 2-lep TR $m_{\tilde{t}} = 400 \text{ GeV}, m_{\tilde{\chi}_{\cdot}^0} = 1 \text{ GeV}$ $\underset{t}{\overset{}{\overset{}}} = 500 \text{ GeV}, \ m_{\widetilde{\chi}_{*}^{0}} = 1 \text{ GeV}$ 10 e+µ channels 1 10^{-1} 450 150 200 250 300 350 400 500 E^{miss}_T [GeV]

2-lepton ttbar control region: exactly two leptons, same jet and bjet requirements, no requirements on mT, ETmiss/sqrt(HT), and miji; $E_{T}^{miss} > 125 \text{ GeV}.$

Trade off btw.:

- signal contamination
- looser cuts than SR

I-lepton ttbar control region: same as signal selection, but with 60 GeV < MT < 90 GeV;

Background estimation (2)

• Sub-dominant background:W+jets

- Again, normalize MC prediction in orthogonal control region;
- Sub-dominant backgrounds: single top, dibosons (VV), W+b/c+jets
 - Relatively small backgrounds;
 - estimated using MC, normalized to NLO predictions

Sub-dominant backgrounds: ttbar+Z, ttbar+W,

- Small cross section (<1 pb), but relevant for tight cuts;</p>
- ttbar+Z(nunu) irreducible background, very similar signature to stop signal;
- no control region could be defined;
- estimated using MC, normalized to NLO prediction (larger uncertainties!)

Fake lepton background: multijet (QCD)

- jets mis-identified as isolated lepton
- estimate using another data sample where lepton identification criteria are relaxed; thus with significantly more fake leptons.

I-lepton W+jets control region:

same as signal selection, but with 60 GeV < MT < 90 GeV; b-jet veto;

Systematic Uncertainties

- detector related: e.g. jet energy scale (JES), electron identification efficiency, luminosity
- generator related: e.g. parton-density-function, renormalization & factorization scales, parton-shower
- both types above apply to MC samples
- Study by varying each uncertainty (typically one at a time), and re-run full analysis on MC samples
 - yields new MC shapes and numbers --> affects both normalization and extrapolation
 - when using CR to normalize MC samples to data, only the extrapolation uncertainty will enter

MC pred. ttbar	SR A	CR I	CR 2
nominal	5.1	103.4	248.6
JES up	6.1 (+20%)	117.8 (+14%)	289.9 (+17%)
JES down	4.2 (-18%)	87.2 (-16%)	208.3 (-16%)

Example (numbers are made-up):

- Taking the MC prediction for ttbar in the SR would yield a JES uncertainty of +20%/-18%
- However, when normalizing ttbar in CRI then what remains is the relative change:
 - nominal MC extrapolation factor = 5.1 / 103.4 = 0.049
 - JES up extrapolation factors = 6.1/117.8 = 0.052 (i.e. +6%)
- The effective JES uncertainty is +6% / -2%

Statistical model (1)

Perform simultaneous fit of all control regions (and later signal regions). Properly accounts for:

cross contamination

(some ttbar also in W+jet region, some signal in control regions, etc.),

• uncertainties can be correlated

(e.g. JES is correlated btw. ttbar, W+jets, signal, etc.)

Each control / signal region is taken as a single bin (could be more in principle, c.f. profiling of uncertainties)

5 overlapping SRs

4

3 orthogonal CRs

Statistical model (2)

Consider control regions only
Likelihood function is

where $P_{\text{bin-j}} = P_{\text{bin-j}}(N^{\text{obs}}_{\text{bin-j}}, N^{\text{fit}}_{\text{bin-j}})$ is the Poisson distribution, $N^{\text{obs}}_{\text{bin-j}}$ is the number of observed events in bin-j, $N^{\text{fit}}_{\text{bin-j}} = \sum N^{\text{proc-i}}_{\text{bin-j}}$ is the fitted number of events in the same bin, and G_{syst} is a product of Gaussians which describes the prior systematic uncertainties as follows.

$$N^{\text{proc}-i}_{\text{bin}-j} = \begin{cases} N^{\text{fit},\text{proc}-i}_{\text{bin}-j} = N^{\text{MC},\text{proc}-i}_{\text{bin}-j} \times \mu^{\text{proc}-i} \times \prod[1 + \lambda^{\text{sys}-k} \times \sigma^{\text{sys}-k}, \text{proc}-i_{\text{bin}-j}] & \text{floating} \\ N^{\text{MC},\text{proc}-i}_{\text{bin}-j} = N^{\text{MC},\text{proc}-i}_{\text{bin}-j} & \times \prod[1 + \lambda^{\text{sys}-k} \times \sigma^{\text{sys}-k}, \text{proc}-i_{\text{bin}-j}] & \text{normalization} \\ \text{floating} & \text{floating} \end{pmatrix} \\ \end{cases}$$

where $\mathbb{N}^{MC, \text{proc}-i_{\text{bin}-j}}$ is the MC predicted number of events for (bkg) process i, in bin j, $\mu^{\text{bkg}\,i}$ is a fitted (freely floating) fit parameter to scale process i, $\lambda^{\text{sys}-k}$ is a nuisance parameter for a systematic uncertainty k, and $\sigma^{\text{sys}-k}$, $p^{\text{roc}-i_{\text{bin}-j}}$ denotes the impact of applying a 1-sigma variation of systematic k on (bkg) process i in bin j. Penalty terms describe the prior (Gaussian) probability distribution of the nuisance parameters: $G_{\text{syst}} = \prod G(\lambda^{\text{sys k}}, 0, 1)$

Statistical model (1)

$L = P_{2-lep} \times P_{1-lep TR} \times P_{1-lep WR} \times G_{syst}$

- Each control / signal region is taken as a single bin (could be more in principle, c.f. profiling of uncertainties)
- Event counts are described by Poisson statistics
- Describe full system by its likelihood function,
- maximize it to find the "fitted" number of backgrounds and the associated uncertainties
- ▶ same likelihood is used to determine p-value (compatibility with background-only hypothesis), and CL_s exclusion limits

5 overlapping SRs

6

3 orthogonal CRs

Till Eifert -- WS on limit setting and global fits in the LHC era

Background fit

- Consider the 3 CRs (observed events in SRs are not used here)
- Exact solution to maximize the likelihood.
- W+jets is fitted (μ^{W+jets}), ttbar is fitted independently in the 2-lep TR (μ^{ttbar, 2lep}) and 1-lep CRs (μ^{ttbar, 1lep}). μ^{ttbar, 1lep} is for validation, while the ttbar estimate in all SRs is taken from 2-lep TR which minimizes the extrapolation systematics.

Regions	SR A	SR B	SR C	SR D	SR E	2-lep TR	1-lep TR	1-lep WR
$t\bar{t}$ $t\bar{t} + V$, single top V+jets, $VVMultijet$	36 ± 5 2.9 ± 0.7 2.5 ± 1.3 0.4 ± 0.4	27 ± 4 2.5 ± 0.6 1.7 ± 0.8 0.3 ± 0.3	$\begin{array}{c} 11 \pm 2 \\ 1.6 \pm 0.3 \\ 0.4 \pm 0.1 \\ 0.3 \pm 0.3 \end{array}$	$\begin{array}{c} 4.9 \pm 1.3 \\ 0.9 \pm 0.3 \\ 0.3 \pm 0.1 \\ 0.3 \pm 0.3 \end{array}$	$\begin{array}{c} 1.3 \pm 0.6 \\ 0.4 \pm 0.1 \\ 0.1 \pm 0.1 \\ 0.0 \substack{+0.3 \\ -0.0 \end{array}$	$\begin{array}{c} 109\pm10\\ 7.2\pm1.3\\ 1.6\pm0.8\\ 0.0^{+0.6}_{-0.0}\end{array}$	364 ± 23 18 ± 3 38 ± 11 1.7 ± 1.7	59 ± 19 6.1 ± 1.6 162 ± 23 0.8 ± 0.8
Total background Signal benchmark 1 (2) Observed events	42 ± 6 25.6 (8.8) 38	31 ± 4 23.0 (8.1) 25	13 ± 2 17.5 (6.9) 15	6.4 ± 1.4 13.5 (6.2) 8	$1.8 \pm 0.7 \\ 7.1 (4.5) \\ 5$	$118 \pm 10 \\ 1.7 (0.6) \\ 118$	$\begin{array}{c} 421 \pm 20 \\ 2.3 \ (0.6) \\ 421 \end{array}$	$228 \pm 15 \\ 0.4 \ (0.1) \\ 228$

- ▶ The sum of fitted background numbers in each CR agree with the observation by construction,
- ▶ The background in the SRs comes from an MC-based extrapolation, from the CRs
- All (statistical and systematics) uncertainties are included
- ▶ The fitted number of W+jets and ttbar events is compatible with the theory predictions. $\mu^{W+jets} \simeq 0.9, \mu^{ttbar, 2lep} \simeq 1.0$

Discovery Fit (1)

- Probe the compatibility of data with the SM-only hypothesis. The resulting compatibility is expressed as a probability and is called p₀-value (or just p-value).
- Test one signal-region (SR) at a time

p₀-value is the probability under the SM-only hypothesis to find an upwards fluctuation (one-sided hypothesis test) as high, or higher as observed.

Discovery Fit (2)

- Probe the compatibility of data with the SM-only hypothesis. The resulting compatibility is expressed as a probability and is called p₀-value (or just p-value).
- Test one signal-region (SR) at a time, i.e. another Poisson is multiplied to the likelihood (L).
- Allow for a positive signal contribution in the SR (µ^{sig})
 This is ignoring a potential signal contamination in the CRs, which is conservative (background is overestimated).Without a signal model, the signal contribution to CRs is unknown.
- maximize likelihood both for $\mu^{sig} = 0$, and μ^{sig} floating. The ratio is used as the test statistic: $\Delta \log L = \log L^{max}(\mu^{sig}=0) - \log L^{max}(\mu^{sig} \text{ floating})$
- This can be directly used to get an approximative p_0 -value [in units of std dev.] from sqrt(-2 x $\Delta \log L$) [Wilk's theorem]
- Exact result: generate pseudo (toy) experiments to gauge the $\Delta \log L$ distribution for the SM-only scenario.

Regions	SR A	SR B	SR C	SR D	SR E
p_0 -values	0.50	0.50	0.32	0.24	0.015

po-value

 $\Delta \log L$ distribution follows a chi² distribution with one-degree of freedom.

observation

 $\Delta \log L$

Till Eifert -- WS on limit setting and global fits in the LHC era

 $\sim 2\sigma$

Exclusion Fit (1)

- Probe the compatibility of data with the SM+signal hypothesis. The resulting compatibility is expressed as a probability and is called p1-value. Note that we have to assume one signal model now.
- Test one signal-region (SR) at a time

p₁-value is the probability under the SM+signal hypothesis to find a downwards fluctuation (one-sided hypothesis test) as low, or lower as observed.

Exclusion Fit (2)

- Probe the compatibility of data with the SM+signal hypothesis. The resulting compatibility is expressed as a probability and is called p₁-value. Note that we have to assume one signal model now.
- Test one signal-region (SR) at a time, i.e. another Poisson is multiplied to the likelihood (L).
- Allow for a positive signal contribution (μ^{sig}), in all regions (SR and CRs).
- maximize likelihood both for $\underline{\mu^{sig}} = I$, and μ^{sig} floating. The ratio is used as the test statistic: $\Delta \log L = \log L^{max}(\mu^{sig}=1) - \log L^{max}(\mu^{sig} floating)$ [almost same as the difference in chi² of two fits]
- This can be directly used to get an approximative p_1 -value [in units of std dev.] from sqrt(-2 x $\Delta \log L$) [Wilk's theorem]
- Exact result: generate pseudo (toy) experiments to gauge the Δlog L distribution for the <u>SM+signal</u> scenario.
- This p₁-value is also called CL_{s+b} value. If it is below 0.05 (i.e. 5%), then we can say that the given signal model is excluded at 95% confidence level (CL).

Exclusion Fit (3)

- This p₁-value is also called CL_{s+b} value. If it is below 0.05 (i.e. 5%), then we can say that the given signal model is excluded at 95% confidence level (CL).
- Potential issue: in a situation where the observation is a significant down-fluctuates from the SM background, the CL_{s+b} method's exclusion power is over-aggressive (excluding more than expected).

- Way out: include penalty when observation is incompatible with SM-only hypothesis.
- CL_b similar to CL_{s+b} but obtained from toys around SM-only (see illustration)
- Define: $CL_s = CL_{s+b} / CL_b$ [strictly speaking, this is not a probability ...]
- For very small signal numbers CL_s approaches 1
- Exclusion is based on CL_s value. This is the convention agreed upon by the LHC experiments.

Exclusion Plot (1)

- (1) <u>Observed limit</u>: Calculate CL_s values for each signal model, for a given signal-region (SR).
 - All uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).
 - The contour where $CL_s = 0.05$ is the observed exclusion limit at 95% CL . The finite signal grid is linearly smoothed.
- (2) <u>Expected limit</u>: repeat CL_s calculation, but with the observation in the SR set to the estimated background. This is the expected limit under the assumption of observing SM background only.
 - Same treatment of uncertainties and CL_s contour as for observed limit
- <u>± I σ lines around observed limit</u> (I): re-run limit calculation (I) while increasing or decreasing the signal cross section by the theoretical signal uncertainties (PDF, scales).
- $\pm I \sigma$ band around expected limit (2) "yellow band": the band contours are the $\pm I \sigma$ results of the fit (2).

Obseverd CL_s values for SR A

Exclusion Plot (2)

I. Make exclusion plot for each SR (A-E)

The gray overlaid numbers show the upper limit on the production cross-section

Till Eifert -- WS on limit setting and global fits in the LHC era

Signal model independent upper limits

- Give an upper limit on the number of beyond-SM (BSM) events in each SR.
 In other words: what is the maximum number of events that can be added to the observation in a given SR, keeping it (just) compatible with the background-only hypothesis at 95% CL.
- Test one signal-region (SR) at a time
- Fit setup: include one SR, allow for signal contribution in the SR.
- Signal-model specific input is <u>not</u> included: i.e. signal contamination in the CRs is ignored, signal systematic uncertainties (e.g. JES) is ignored, etc.
- Varying the signal strength (in the SR), the CL_s calculation is performed
 - see illustration plot.
- The signal strength which corresponds to a CL_s value of 0.05 is the upper limit.

Regions	SR A	SR B	SR C	SR D	SR E
Obs. (exp.) $N_{\rm BSM} <$	15.1(17.2)	10.1 (13.8)	10.8 (9.2)	8.4 (7.0)	8.2 (4.6)

These limits are intended to be used by externals to test new/other signal models. This will be demonstrated in the tutorial session.

Presentation of ATLAS SUSY results

Disclaimer:

Current ATLAS SUSY guidelines on presenting results do not necessarily apply to previously published results, or non-SUSY results.

Results provided in paper/conf note

example upper limits table

4 signal-regions	σ _{vis}	Nvis	N _{vis}
Electron channel	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$S^{95}_{ m obs}$	$S_{ m exp}^{95}$
3JL	50	52	63^{+23}_{-11}
3JT	14	14.3	$16.5_{-3.0}^{+6.7}$
4JL	33	34	38^{+15}_{-7}
4 JT	10	10.6	$9.5^{+4.3}_{-1.6}$

Example from SUSY 1-lepton paper (arxiv 1109.6606)

For each signal-region (SR) provide

- upper limit on the number of visible signal events in SR: $N_{vis} = N_{vis}(N^{obs}, N^{bkg}, \Delta^{bkg})$
- upper limit on the visible signal cross-section in SR: $\sigma_{vis} = A_X \epsilon_X \sigma = N_{vis} / L$ $\sigma_{vis} (N^{obs}, N^{bkg}, \Delta^{bkg}, L, \Delta L)$
- Provide expected and observed limits.
- These limits are <u>signal</u> model independent, [but analysis and detector dependent] can be used to compare against prediction of any signal model (in the analysis' SR).

Default stats. method: CLs

Till Eifert -- WS on limit setting and global fits in the LHC era

Blue: uncertainties (some complexity e.g. correlated unc. not shown here)

Results provided in paper/conf note

example interpretation

Example from ATLAS-CONF-2011-155

• For multi-SR analyses:

Check in the paper whether SR bins (channels) are combined, or only one is chosen. In the latter case, it's always the best <u>expected</u> SR per signal model point.

- Limits in the model parameter space $CLs(N^{obs}, N^{bkg}, \Delta^{bkg}, L, \Delta L, (AxE)^{model}, \Delta(AxE)^{model}, \sigma^{sig}$ $p^{rod}, \Delta \sigma^{sig prod})$
 - Provide observed & expected p-space limits, and I σ band around expectation.
- [optional] upper limit on the production crosssection:

 $\begin{aligned} & \sigma_{\text{model}} = N_{\text{vis}} / \left[(A \times \epsilon)^{\text{model}} \times L \right] \\ & \sigma_{\text{model}} \left(N^{\text{obs}}, N^{\text{bkg}}, \Delta^{\text{bkg}}, L, \Delta L, (A \times \epsilon)^{\text{model}}, \Delta (A \times \epsilon)^{\text{model}} \right) \end{aligned}$

- No dependence on $\sigma^{\text{sig prod}}, \Delta \sigma^{\text{sig prod}}$
- So far provided for simplified models only.

Blue: uncertainties (some complexity e.g. correlated unc. not shown here)

Default stats. method: CLs

28)

Numerical results in HEPdata

Published + auxiliary plots and interpretations are numerically available from HEPdata.

ATLAS SUSY results from https://twiki.cern.ch/twiki/ bin/view/AtlasPublic/SupersymmetryPublicResults

2011 Data (7 TeV)

Short Title of the Paper	Date	√s (TeV)	L (fb ⁻¹)	Document	Plots+Aux. Material	Journal
3 leptons + Etmiss [Direct Gauginos] NEW	08/2012	7	4.7	1208.3144	Link	Submitted to PLB
2 leptons + Etmiss [Direct Gauginos/sleptons] NEW	08/2012	7	4.7	1208.2884	Link	Submitted to PLB
1 lepton + >=4 jets (>=1 b-jet) + Etmiss [Heavy Stop] NEW	08/2012	7	4.7	1208.2590	Link	Submitted to PRL
0 lepton + 1-2 b-jet + 5-4 jets + Etmiss [Heavy Stop] NEW	08/2012	7	4.7	1208.1447	Link	Submitted to PRL
0 lepton + >=2-6 jets + Etmiss NEW	08/2012	7	4.7	1208.0949	Link	Submitted to PRD
0 lepton + >=3 b-jets + >=(1-3) jets + Etmiss [Gluino med. stop/sb.]	07/2012	7	4.7	1207.4686	Link	Submitted to EPJC
0 lepton + >=(6-9) jets + Etmiss	06/2012	7	4.7	1206.1760	Link	JHEP 1207 (2012) 167
Electron-muon continuum [RPV]	05/2012	7	2.05	1205.0725	Link (inc. HEPData)	EPJC 72 (2012) 2040
Z->II + b-jet + jets + Etmiss [Direct Stop Natural GMSB]	04/2012	7	2.05	1204.6736	Link (inc. HEPData)	PLB 715 (2012) 44
=3 leptons + Etmiss [Direct Gauginos]	04/2012	7	2.05	1204.5638	Link (inc. HEPData)	PRL 108 (2012) 261804
>=1 tau + jets + Etmiss [GMSB]	04/2012	7	2.05	1204.3852	Link	PLB 714 (2012) 197
>=2 taus + jets + Etmiss [GMSB]	03/2012	7	2.05	1203.6580	Link (inc. HEPData)	PLB 714 (2012) 180
b-jet(s) + 0-1 lepton + jets + Etmiss [Gluino med. stop/sb.]	03/2012	7	2.05	1203.6193	Link	PRD 85 (2012) 112006
2 same-sign leptons + jets + Etmiss	03/2012	7	2.05	1203.5763	Link (inc. HEPData)	PRL 108 (2012) 241802
2 b-jets + Etmiss [Direct sbottom]	12/2011	7	2.05	1112.3832	Link (inc. HEPData)	PRL 108 (2012) 181802
Disappearing track + jets + Etmiss [AMSB Strong Prod.]	02/2012	7	1.02	1202.4847	Link	EPJC 72 (2012) 1993
2 photons + Etmiss [GGM]	11/2011	7	1.07	1111.4116	Link	PLB 710 (2012) 519
2 leptons + jets + Etmiss	10/2011	7	1.04	1110.6189	Link (inc. HEPData)	PLB 709 (2012) 137
0 lepton + >=(6-8) jets + Etmiss	10/2011	7	1.34	1110.2299	Link (inc. HEPData)	JHEP 11 (2011) 99
1 lepton + jets + Etmiss	09/2011	7	1.04	1109.6606	Link (inc. HEPData)	PRD 85 (2012) 012006
0 lepton + >=(2-4) jets + Etmiss	09/2011	7	1.04	1109.6572	Link (inc. HEPData)	PLB 710 (2012) 67
Electron-muon resonance [RPV]	09/2011	7	1.07	1109.3089	Link (inc. HEPData)	EPJC 71 (2011) 1809

The Durham HepData Project

REACTION DATABASE DATA REVIEWS PARTON DISTRIBUTION FUNCTION SERVER OTHER HEP RESOURCES

Extra resource relating to the paper arxiv:1109.6572 - CERN-PH-2011-145

Experimental acceptance/efficiency and excluded cross section*branching ratios:

Signal expectations and experimental acceptance/efficiency for M_gluino vs M_squark grid (massless LSP) Signal expectations and experimental acceptance/efficiency for CMSSM/MSUGRA grid SLHA files:

susy sqgl slha files

29

susy CMSSM/MSUGRA slha files

Extra resource relating of the ATLAS NOTE ATLAS-CONF-2011-155

Experimental acceptance/efficiency and excluded cross section*branching ratio for M_gluino vs M_LSP grid: (direct decays) - SHLA files (one-step cascade decays, x=1/4) - SHLA files Example of extra resources from 0-lepton search (<u>http://hepdata.cedar.ac.uk/view/p8106</u>)

- Extra resources: (Axε)^{signal model}, SLHA files
- available for several publications

Input to HEPdata (starting with winter 2012 results)

Refined and extended list of input to HEPdata, starting with winter 2012 results.

- Plots, interpretation (CLs limits) from paper and auxiliary material
- For each signal region, and for all relevant models
 - acceptance (A), defined next page [A=N_{fiducial}/N_{total}]
 - efficiency (ϵ), defined next page [$\epsilon = N_{fiducial-reco}/N_{fiducial}$]
 - Δ^{tot} total systematic and theoretical signal uncertainty, not including MC stat. unc.
 - CLs value
- For all relevant models
 - Number of generated MC events (can be used to derive all signal MC stat. unc.)
 - **O**^{tot} total signal production cross section
 - SUSY Les Houches Accord (SLHA) files
- Relevant models:
 - E.g. small number of simplified models (easy kinematics)
 - no smoothing/interpolation between points

Definition of "fiducial" (or what's A and ε)

Guiding idea for fiducial cuts:

- defined using truth and hadron level quantities
- can be implemented by externals (w/o detector simulation)

Acceptance $A=N_{fiducial} / N_{total}$

where fiducial cuts are based on the following objects:

- truth electrons/muons/E_T^{miss} (non-interacting)
- hadron level jets

• heavy-flavor: b-quark matched to jet, at parton level

all above with analysis cuts on pT, eta.

Apply

- object overlap-removal (in eta-phi space)
- avoid leptons from b-jets: require mother's mass above 10 GeV or mother being a tau.

Use a **common definition** for all ATLAS SUSY public results !

Axe is the full event selection efficiency at detector level.

Efficiency $\epsilon = N_{fiducial-reco}/N_{fiducial}$

where fiducial-reco cuts are our nominal analysis cuts, applied to detector level variables.

Differences to Acceptance include:

- Reconstruction inefficiencies
- Full particle identification cuts
- Resolution effects
- trigger inefficiencies

Note that ε can be bigger or smaller than one.

ATLAS SM group uses b-hadrons to define fiducial cross-sections.

Till Eifert -- WS on limit setting and global fits in the LHC era

Re-interpreting Results

A user can probe his/her favorite model(s) by:

- I. take our background estimate (per SR): $N^{tot} \pm \Delta^{tot}$ (numbers in publication)
- 2. implement event selection (per SR), validate against our acceptance numbers (in HEPdata)
- 3. implement a detector response, validate against our efficiency numbers (in HEPdata)
- 4. run on favorite model, and calculate sensitivity/limits using our visible upper limits (from publication)

The limit setting code (CLs, p-values, combination of channels/bins) used within the ATLAS SUSY group is based on the public ROOT / RooStats package. From this public package it is a small step to a standalone statistics tool to be used with our data input from HepData and some signal model (passed through AxE). The ATLAS SUSY group considers to provide such a standalone statistics tool.

