

THE SECRET LIFE OF PARTONS

> ZOLTÁN NAGY DESY

in collaboration with Dave Soper

Introduction

Pile-up events

2010

síngle vertex reconstructed!

4 vertices

25 vertices

201

Introduction

From theory point of view an event at the LHC looks very complicated

- - ➡ Multi parton distribution functions
- 2. Hard part of the process (yellow bubble)
 ▷ Matrix element calculation, cross sections at LO, NLO, NNLO level
- 3. Radiation

(red graphs)

- Parton shower calculation
- Partonic decay
- ➡ Matching to NLO, NNLO
- 4. Underlying event

- (blue graphs)
- Models based on multiple interaction
- Diffraction
- 5. Hardonization

(green bubbles)

- Universal models
- Hadronic decay
- ∽

A general purpose parton shower program must generate partonic final states ready for hadronization

A general purpose parton shower program must generate partonic final states ready for hadronization

▶ in a *FULLY exclusive way* (momentum, flavor, spin and color are fully resolved)

A general purpose parton shower program must generate partonic final states ready for hadronization

- ▶ in a *FULLY exclusive way* (momentum, flavor, spin and color are fully resolved)
- ▶ as *precisely* as possible (*e.g.*: sums up large logarithms at NLL level).

Mandatory design principles

- 1. Shower generates events and calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

Mandatory design principles

- 1. Shower generates events and calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

Normalization

5. Shower doesn't change the normalization. This is the unitarity condition.

Mandatory design principles

- 1. Shower generates events and calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

Normalization

5. Shower doesn't change the normalization. This is the unitarity condition.

Some technical choices

- 6. Everything that makes the implementation simpler
 - leading color approximation
 - spin averaging
 - angular ordering (loosing full exclusiveness of the event)
 - Catani-Seymour momentum mapping
 -

Mandatory design principles

- 1. Shower generates events and calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

Normalization

5. Shower doesn't change the normalization. This is the unitarity condition.

Some technical choices

- 6. Everything that makes the implementation simpler
 - leading color approximation
 - spin averaging
 - angular ordering (loosing full exclusiveness of the event)
 - Catani-Seymour momentum mapping
 -

Factorization: Collinear limit

The QCD matrix elements have universal factorization property when two external partons become collinear

Factorization: Soft limit

The QCD matrix elements have universal factorization property when an external gluon becomes soft

Factorization: Soft limit (1-loop)

There is another type of the unresolvable radiation, *the virtual (loop graph) contributions*. We have *universal factorization properties* for the loop graphs. E.g.: in the soft limit, when the loop momenta become soft we have

The splitting operators can be obtained from these factorization rules.

Mandatory design principles

- Shower calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

1. Fixes the general structure of the splitting kernels.

Normalization

5. Shower doesn't change the normalization. This is the unitarity condition.

Approx. of the Density Operator

Some of the real emissions are not resolvable. Having a snapshot of the system at shower time t'

$$\left|\rho_{\infty}^{\mathrm{R}}\right) \approx \underbrace{\int_{t}^{t'} d\tau \,\mathcal{H}_{I}(\tau) \left|\rho(t)\right)}_{Resolved \ emissions} + \underbrace{\int_{t'}^{\infty} d\tau \,\mathcal{V}_{I}^{(\epsilon)}(\tau) \left|\rho(t)\right)}_{Unresolved \ emissions}$$

This is a singular contribution

Combining the real and virtual contribution we have got

$$\left|\rho_{\infty}^{\mathrm{R}}\right) + \left|\rho_{\infty}^{\mathrm{V}}\right) = \int_{t}^{t'} d\tau \left[\mathcal{H}_{I}(\tau) - \mathcal{V}_{I}(\tau)\right] \left|\rho(t)\right)$$

This operator dresses up the physical state with one real and virtual emissions those are softer or more collinear than the hard state. Thus the emissions are ordered.

Shower Operator

Now we can use this to build up physical states by considering all the possible way to go from t to t'.

$$\begin{aligned} \left| \rho(t') \right) &= \left| \rho(t) \right) \\ &+ \int_{t}^{t'} d\tau \left[\mathcal{H}_{I}(\tau) - \mathcal{V}_{I}(\tau) \right] \left| \rho(t) \right) \\ &+ \int_{t}^{t'} d\tau_{2} \left[\mathcal{H}_{I}(\tau_{2}) - \mathcal{V}_{I}(\tau_{2}) \right] \int_{t}^{\tau_{2}} d\tau_{1} \left[\mathcal{H}_{I}(\tau_{1}) - \mathcal{V}_{I}(\tau_{1}) \right] \left| \rho(t) \right) \\ &+ \cdots \\ &= \mathbb{T} \exp \left\{ \int_{t}^{t'} d\tau \left[\mathcal{H}_{I}(\tau) - \mathcal{V}_{I}(\tau) \right] \right\} \left| \rho(t) \right) \end{aligned}$$

 $\mathcal{U}(t',t)$ shower evolution operator

Evolution Equation

The evolution operator obeys the following equation

resolved radiations

unresolved radiation

Evolution Equation

We can write the evolution equation in an integral equation form

$$\mathcal{U}(t_{\rm f}, t_2) = \mathcal{N}(t_{\rm f}, t_2) + \int_{t_2}^{t_{\rm f}} dt_3 \, \mathcal{U}(t_{\rm f}, t_3) \mathcal{H}_I(t_3) \mathcal{N}(t_3, t_2)$$

"Nothing happens"

where the non-splitting operator is

Sudakov operator

$$\mathcal{N}(t',t) = \mathbb{T} \exp\left\{-\int_{t}^{t'} d\tau \,\mathcal{V}_{I}(\tau)\right\}$$

Mandatory design principles

- Shower calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

1. Fixes the general structure of the splitting kernels.

2. Fixes the evolution equation.

Normalization

5. Shower doesn't change the normalization. This is the unitarity condition.

Shower Time

Let us consider a jet with two subsequent emission:

But in the shower algorithms the daughter partons were generated with zero virtuality and this lead to a different virtuality for the mother parton.

In order for the approximation of neglecting the virtualities of the daughter partons to be valid we need:

The shower time has to be

$$t = -\log \frac{(p_1 + p_2)^2 - m^2}{p \cdot Q_0}$$

The evolution variable has to be the virtuality of the splitting divided by the mother parton energy.

(Let's discuss this a little bit latter in more detail!)

Mandatory design principles

- Shower calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

Normalization

5. Shower doesn't change the normalization. This is the unitarity condition.

- 1. Fixes the general structure of the splitting kernels.
- 2. Fixes the evolution equation.
- 3. Fixes the shower time.

DGLAP Evolution of PDFs

Perturbative part (what we calculate) Completely independent of the PDFs

$$\rho(t_{\rm f})) = \mathcal{F}(t_{\rm f}) \left(\rho_{\rm pert}(t_{\rm f}) \right)$$

PDFs: The non-perturbative physics is only here

It MUST BE independent of the PDF, otherwise the perturbative and nonperturbative physics are mixed.

$$\mathbb{T}\exp\left\{\overbrace{-\int_{t}^{t'}d\tau\,\mathcal{V}_{I}(\tau)}^{\mathsf{T}(t')}\right\} = \mathcal{N}(t',t) = \mathcal{F}(t')\mathcal{N}_{\mathrm{pert}}(t',t)\mathcal{F}^{-1}(t) = \mathcal{F}(t')\,\mathbb{T}\exp\left\{\overbrace{-\int_{t}^{t'}d\tau\,\mathcal{V}_{I}^{\mathrm{pert}}(\tau)}^{\mathsf{T}(t')}\right\}\mathcal{F}^{-1}(t)$$

Leads to the evolution equation of the parton distribution functions.

DGLAP Evolution

In general the incoming parton can be massive, this leads to a slightly modified DGLAP evolution. That is

$$\mu^2 \frac{d}{d\mu^2} f_{a/A}(\eta, \mu^2) = \sum_{\hat{a}} \int_0^1 \frac{dz}{z} \; \frac{\alpha_s(\mu^2)}{2\pi} P_{a\hat{a}}\left(z, z\frac{m^2}{\mu^2}\right) f_{\hat{a}/A}(\eta/z, \mu^2)$$

with the modified evolution kernels:

$$\begin{split} P_{\rm qq}(z,\lambda) &= C_{\rm F} \left[\left(\frac{2}{1-z} - (1+z) - 2\lambda \right) \theta \left(\frac{1}{1-z} > 1+\lambda \right) \right]_+ \ , \\ P_{\rm gg}(z,\lambda) &= 2C_{\rm A} \left[\frac{1}{(1-z)_+} - 1 + \frac{1-z}{z} + z(1-z) \right] + \gamma_{\rm g}(\lambda) \,\delta(1-z) \ , \\ P_{\rm qg}(z,\lambda) &= T_{\rm R} \left[1 - 2 \, z \, \left(1-z \right) + 2\lambda \right] \theta(z(1-z) > \lambda) \ , \\ P_{\rm gq}(z,\lambda) &= C_{\rm F} \left[\frac{1+(1-z)^2}{z} - 2\lambda \right] \theta \left(\frac{1}{z} > 1+\lambda \right) \ . \end{split}$$

DGLAP Evolution

Mandatory design principles

- Shower calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

Normalization

5. Shower doesn't change the normalization. This is the unitarity condition.

- 1. Fixes the general structure of the splitting kernels.
- 2. Fixes the evolution equation.
- 3. Fixes the shower time.
- 4. Fixes the evolution of the PDFs.

Unitarity Condition

The singularities must be cancelled in the soft and collinear limits between the real and virtual emissions

$$(1 | [\mathcal{H}_I(t) - \mathcal{V}_I(t)] = \text{Finite}(t) \xrightarrow{t \to \infty} 0$$

In parton shower implementation we always choose

Finite(t) = 0 for every t

The shower evolution *doesn't change the normalization*.

Unitarity condition is not God given, not derived from first principles. It is only a convenient choice!!! In some cases it is rather an unpleasant limitation....

Mandatory design principles

- Shower calculates cross sections approximately using the soft and collinear factorization of the QCD amplitudes (tree and 1-loop level).
- 2. The emissions are strongly ordered.
- 3. The ordering must control the goodness of the soft and collinear approximations.
- 4. The parton shower must be a perturbative object.

Normalization

5. Shower doesn't change the normalization. This is the unitarity condition.

- 1. Fixes the general structure of the splitting kernels.
- 2. Fixes the evolution equation.
- 3. Fixes the shower time.
- 4. Fixes the evolution of the *PDFs*.

5. Fixes the virtual operator.

A general purpose parton shower program must generate partonic final states

- ▶ in a *FULLY exclusive way* (momentum, flavor, spin and color are fully resolved)
- as precisely as possible (e.g.: sums up large logarithms at NLL level).

Most of the component of the parton shower have been fixed

soft partitioning function

Momentum and flavor mapping

$$\begin{split} &(\{\hat{p},\hat{f},\hat{c}',\hat{c}\}_{m+1}|\mathcal{H}(t)|\{p,f,c',c\}_{m}) & flavor mapping \\ &= \sum_{l=\mathrm{a,b,1,...,m}} \delta\Big(t - T_{l}\big(\{\hat{p},\hat{f}\}_{m+1}\big)\Big) \left(\{\hat{p},\hat{f}\}_{m+1}|\mathcal{P}_{l}|\{p,f\}_{m}\big)\frac{m+1}{2} \\ &\times \frac{n_{\mathrm{c}}(a)n_{\mathrm{c}}(b)\eta_{\mathrm{a}}\eta_{\mathrm{b}}}{n_{\mathrm{c}}(\hat{a})n_{\mathrm{c}}(\hat{b})\eta_{\mathrm{a}}\hat{\eta}_{\mathrm{b}}} \frac{\hat{f}_{\hat{a}/A}(\hat{\eta}_{\mathrm{a}},\mu_{F}^{2})f_{\hat{b}/B}(\hat{\eta}_{\mathrm{b}},\mu_{F}^{2})}{\hat{f}_{a/A}(\eta_{\mathrm{a}},\mu_{F}^{2})f_{b/B}(\eta_{\mathrm{b}},\mu_{F}^{2})} \sum_{k} \Psi_{lk}(\{\hat{f},\hat{p}\}_{m+1}) \\ &\times \sum_{\beta=L,R} (-1)^{1+\delta_{lk}} \big(\{\hat{c}',\hat{c}\}_{m+1}|\mathcal{G}_{\beta}(l,k)|\{c',c\}_{m}\big) \\ &\Psi_{lk} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{1}{\hat{p}_{l}\cdot\hat{p}_{m+1}} \left[A_{lk} \frac{2\hat{p}_{l}\cdot\hat{p}_{k}}{\hat{p}_{k}\cdot\hat{p}_{m+1}} + H_{ll}^{\mathrm{coll}}(\{\hat{f},\hat{p}\}_{m+1}) \right] \\ &\text{We still have to say something about the} \\ \bullet \text{ momentum mapping and} \end{split}$$

Most of the component of the parton shower have been fixed

$$\begin{split} & \text{Momentum and} \\ & (\hat{p}, \hat{f}, \hat{c}', \hat{c}\}_{m+1} | \mathcal{H}(t) | \{p, f, c', c\}_m) \\ &= \sum_{l=\mathbf{a}, \mathbf{b}, 1, \dots, m} \delta\left(t - T_l(\{\hat{p}, \hat{f}\}_{m+1})\right) \left(\{\hat{p}, \hat{f}\}_{m+1} | \mathcal{P}_l| \{p, f\}_m\right) \frac{m+1}{2} \\ & \times \frac{n_{\mathbf{c}}(a) n_{\mathbf{c}}(b) \eta_{\mathbf{a}} \eta_{\mathbf{b}}}{n_{\mathbf{c}}(\hat{a}) n_{\mathbf{c}}(\hat{b}) \hat{\eta}_{\mathbf{a}} \hat{\eta}_{\mathbf{b}}} \frac{f_{\hat{a}/A}(\hat{\eta}_{\mathbf{a}}, \mu_F^2) f_{\hat{b}/B}(\hat{\eta}_{\mathbf{b}}, \mu_F^2)}{f_{a/A}(\eta_{\mathbf{a}}, \mu_F^2) f_{b/B}(\eta_{\mathbf{b}}, \mu_F^2)} \sum_k \Psi_{lk}(\{\hat{f}, \hat{p}\}_{m+1}) \\ & \times \sum_{\beta=L,R} (-1)^{1+\delta_{lk}} (\{\hat{c}', \hat{c}\}_{m+1} | \mathcal{G}_{\beta}(l, k)| \{c', c\}_m) \\ & \Psi_{lk} = \frac{\alpha_{\mathbf{s}}}{2\pi} \frac{1}{\hat{p}_l \cdot \hat{p}_{m+1}} \left[A_{lk} \frac{2\hat{p}_l \cdot \hat{p}_k}{\hat{p}_k \cdot \hat{p}_{m+1}} + H_{ll}^{\mathrm{coll}}(\{\hat{f}, \hat{p}\}_{m+1}) \right] \\ \end{split}$$
We still have to say something about the
• momentum mapping and
• soft partitioning function

Most of the component of the parton shower have been fixed Momentum and $\begin{aligned} &\langle \hat{p}, \hat{f}, \hat{c}', \hat{c} \rangle_{m+1} |\mathcal{H}(t)| \{p, f, c', c\}_m \\ &= \sum \delta \left(t - T_l \left(\{\hat{p}, \hat{f}\}_{m+1} \right) \right) \left(\{\hat{p}, \hat{f}\}_{m+1} |\mathcal{P}_l| \{p, f\}_m \right) \frac{m+1}{2} \end{aligned}$ *flavor mapping* l = a, b, 1, ..., m $\times \frac{n_{\rm c}(a)n_{\rm c}(b)\eta_{\rm a}\eta_{\rm b}}{n_{\rm c}(\hat{a})n_{\rm c}(\hat{b})\hat{\eta}_{\rm a}\hat{\eta}_{\rm b}} \frac{f_{\hat{a}/A}(\hat{\eta}_{\rm a},\mu_F^2)f_{\hat{b}/B}(\hat{\eta}_{\rm b},\mu_F^2)}{f_{a/A}(\eta_{\rm a},\mu_F^2)f_{b/B}(\eta_{\rm b},\mu_F^2)} \sum_{k} \Psi_{lk}(\{\hat{f},\hat{p}\}_{m+1})$ $\times \sum (-1)^{1+\delta_{lk}} (\{\hat{c}',\hat{c}\}_{m+1} |\mathcal{G}_{\beta}(l,k)| \{c',c\}_m)$ $\beta = L, R$ $\Psi_{lk} = \frac{\alpha_{\rm s}}{2\pi} \frac{1}{\hat{p}_l \cdot \hat{p}_{m+1}} \begin{bmatrix} A_{lk} & \frac{2p_l \cdot \hat{p}_k}{\hat{p}_k \cdot \hat{p}_{m+1}} + H_{ll}^{\rm coll}(\{\hat{f}, \hat{p}\}_{m+1}) \end{bmatrix}$ We still have to say something about the momentum mapping and soft partitioning function

Is NLL precision inevitable?

One might imagine that because parton splitting functions are correct in the limits of soft and collinear splittings, all large log summations will come out correctly.

Matching

The parton shower starts from the simplest $2\rightarrow 2$ like process and generates the QCD density operator approximately. It would be nice to use exact tree and 1-loop level amplitudes without double counting and destroying the exclusiveness of the shower events.

$$|\rho(t)\rangle = \mathcal{U}(t,0)|\rho_0\rangle = |\rho_0\rangle + \int_0^t d\tau \,\mathcal{U}(t,\tau) \left[\mathcal{H}_I(\tau)|\rho_0\rangle - \mathcal{V}_I(\tau)|\rho_0\rangle\right]$$

Born term

unresolved radiation

resolved radiations

Matching

The parton shower starts from the simplest $2\rightarrow 2$ like process and generates the QCD density operator approximately. It would be nice to use exact tree and 1-loop level amplitudes without double counting and destroying the exclusiveness of the shower events.

$$|\rho(t)\rangle = \mathcal{U}(t,0)|\rho_0\rangle + \int_0^t d\tau \,\mathcal{U}(t,\tau) \left\{ \underbrace{\left[\mathcal{H}_I(\tau) - \mathcal{V}_I(\tau)\right]|\rho_0\right]}_{\approx |\rho_R(\tau)\rangle + |\rho_V(\tau)\rangle} - \left[\frac{\mathcal{H}_I(\tau) + \mathcal{V}_I(\tau)\right]|\rho_0\rangle \right\}$$

 $|
ho_R(au)
angle$: The real contribution is based on the Born level 2-3 amplitudes

$$\left|\rho_{V}(\tau)\right) = -\mathcal{V}_{I}^{(\epsilon)}(\tau)\left|\rho_{0}\right) + \underbrace{\delta(\tau)\left|\tilde{\rho}_{V}\right)}_{\mathbf{V}}$$

Finite part of the 1-loop density operator

$$\lim_{t \to \infty} \int_0^t d\tau \big| \rho_V(\tau) \big) \Leftrightarrow \underbrace{\big| M^{(1)} \big\rangle \big\langle M^{(0)} \big| + c.c.}_{\bullet}$$

1-loop density operator with the $1/\epsilon$ and $1/\epsilon^2$ singularities

Matching

The parton shower starts from the simplest $2 \rightarrow 2$ like process and generates the QCD density operator approximately. It would be nice to use exact tree and 1-loop level amplitudes without double counting and destroying the exclusiveness of the shower events.

$$\rho(t) = \mathcal{U}(t,0) \left[\left| \rho_0 \right\rangle + \left| \tilde{\rho}_V \right\rangle \right] + \int_0^t d\tau \,\mathcal{U}(t,\tau) \left[\left| \rho_R(\tau) \right\rangle - \mathcal{H}_I(\tau) \left| \rho_0 \right\rangle \right]$$

- ✓ This is NLO level matching.
- ✓ Preserves the precision and exclusiveness of the shower.
- ✓ It is possible because the shower scheme also defines a subtraction scheme to calculate NLO fixed order cross sections.
- ✓ It works only for $2 \rightarrow 2$ like process.
- X For higher multiplicity matching we have to work harder. As far as I know there is no solution in the literature.

Where is the code???

Where is the code???

Implementation Issues

The implementation of this scheme is not trivial, we have several difficulties

- We have rather *complicated splitting kernels* due to the choice of the soft partitioning function (based on relative angles only) and the momentum mapping (a global mapping).
- We consider massive partons both in the initial and final states. The threshold effects are not trivial. MSbar PDFs cannot be used.
- We *do color evolution*. This is the 30 years old challenge of the parton shower development.

- Simple MC methods are not sufficient enough.
- We need PDF with *massive evolution* that considers kinematical effects. We need extremely *precise PDF tables*.
- The biggest problem is to deal with the Sudakov operator. The solution is still based on approximation but it is *beyond the leading color* approximation and *systematically improvable*.

$$\mathcal{N}(t',t) = \mathbb{T} \exp\left\{-\int_{t}^{t'} d\tau \,\mathcal{V}_{I}(\tau)\right\}$$

This is an operator in the color space. For N parton we have to exponentiate an N! x N! non-diagonal matrix.

Available features

- The core shower algorithm is implemented
 - Massive parton in the initial and final states
 + new DGLAP evolution
 - ✓ Color evolution (JHEP06(2012)044)
 - ✓ Hadron-hadron, DIS, e+e- and decay showing
 - \checkmark ISR and FSR are NOT independent
- At the moment two processes are available

 $\checkmark e^+e^- \longrightarrow jets$

$$\checkmark pp, p\bar{p} \longrightarrow Z^0 / \gamma + jets$$

Available features

Available features

Under development

- More 2→2 like processes in the core package
 - These processes will be matched to NLO
- Heavy flavor decays with nested showering
- Coulomb gluon (JHEP06(2012)044)
- Spin correlations (JHEP0807:025(2008))
- Hadronization from PYTHIA
- Threshold resummation of soft gluons
- More processes from HELAC
 - Multi jet matching at NLO level
- Finding a name (at the moment the package is called to nlojet++-core)

We calculate Drell-Yan total cross section at 14TeV with $(0.7 \text{ GeV})^2 < Q^2 < (1\text{TeV})^2$

The subleading color contributions are not just 10% what we naively expect.

Comparison

	Herwig++	Ρυτηία	SHERPA (C-S shower)	Our shower
Shower time	<i>Emission angle</i> violates exclusiveness	Transverse momentum	Transverse momentum	Virtuality divided by mother parton energy
Soft partitioning function	Based on angles	Energy dependence	Energy dependence	Based on angles
Momentum mapping	Global mapping (only at the end)	Local mapping (FSR) Global mapping (ISR)	Local mapping	Global mapping
Color treatment, Wide angle soft gluon	Full color evolution Wide angle gluon dropped	<i>Leading color approx.</i> ??Half dipole (Ini-Fin)	Leading color approx.	Color evolution
PDF, initial state massive parton	MSbar PDF No massive quark	MSbar PDF No massive quark	MSbar PDF No massive quark	Massive PDF modified DGLAP
Normalization	Unitarity condition	Unitarity condition	Unitarity condition	Unitarity condition
Coulomb gluon	Not possible	Not possible	Not possible	Not yet implemented

Conclusions

- Building a parton shower is not simple and there are still many things to study in order to be able to consider shower cross sections as predictions.
- We have less freedom than we thought (ordering, soft gluons, splitting kernel, mapping, PDF, matching, higher order effects,...)
- More theory input is required (factorization, PDF definition, resummation, ...)
- But we made some progress and these ideas have been implemented in a general purpose Monte Carlo program.
- More manpower is needed for implementing new features, testing, tuning,