
An Introduction to CMake/CTest
Jan Engels 1

Jan Engels

Advanced Programming Concepts Workshop 2012

Desy, 2012-10-11

An Introduction
to CMake/CTest

An Introduction to CMake/CTest
Jan Engels 2

What is CMake?

● CMake
– is a tool for generating native build environments

● UNIX/Linux -> Makefiles
● Windows -> VS Projects/Workspaces
● Apple -> XCode

– Open-Source :)
– Cross-Platform

An Introduction to CMake/CTest
Jan Engels 3

CMake features

● CMake's nice features:
– Manage complex, large build environments (KDE4)
– Simple, intuitive syntax
– Flexible

● Support for Macros
● So called CMake modules are available for finding existing software

– FindGSL.cmake, FindOpenGL.cmake, FindZLib.cmake ...
– Can be customized, e.g. FindROOT.cmake

● Create custom targets/commands
● Support for regular expressions (*nix style)

– Support for out-of-source builds
– Cross Compiling
– Integrated Testing & Packaging (CTest, CPack)

An Introduction to CMake/CTest
Jan Engels 4

CMake's build system generator

CMake Native Build System

Native Build ToolsExecutables / Libraries

CMakeLists.txt

An Introduction to CMake/CTest
Jan Engels 5

CMake basic concepts

● CMakeLists.txt
– Input text files that contain the project parameters and describe the flow control of the

build process in simple CMake language.

● Source Tree (where source files are located)
– CmakeLists.txt
– Source files (hello.cc)
– Header files (hello.h)

● Binary Tree (where build files are located)
– Native build system files (Makefiles)
– Output from build process:

● Libraries, executables
● Any other build generated files

● Source and Binary trees may be:
– In the same directory (in-source build)
– In different directories (out-of-source build)

An Introduction to CMake/CTest
Jan Engels 6

CMake basic concepts

● Subdirectories added with ADD_SUBDIRECTORY
● Child inherits from parent (lacking feature in traditional Makefiles)
● Order of processing: Dir1;Dir3;Dir4;Dir2

– When CMake finds an ADD_SUBDIRECTORY command it stops processing the current file
and goes down the tree branch

Dir1/CMakeLists.txt

ADD_SUBDIRECTORY(Dir3)
ADD_SUBDIRECTORY(Dir4)

Dir2/CMakeLists.txt

Project's Top-Level
CmakeLists.txt

ADD_SUBDIRECTORY(Dir1)
ADD_SUBDIRECTORY(Dir2)

Dir3/CMakeLists.txt

Dir4/CMakeLists.txt

An Introduction to CMake/CTest
Jan Engels 7

CMake variables

● CMake variables
– CMAKE_INSTALL_PREFIX

● Where to put files when calling 'make install'
– CMAKE_BUILD_TYPE

● Type of build (Debug, Release, ...)
– BUILD_SHARED_LIBS

● Switch between shared and static libraries
– CMAKE_MODULE_PATH

● Path to find own written cmake modules (e.g. FindMyPackage.cmake)

● CMake variables can be set in the CMakeLists.txt and dynamically
changed on the command line as follows:
– cmake -DBUILD_SHARED_LIBS=OFF
– GUI also available: ccmake

An Introduction to CMake/CTest
Jan Engels 8

Configuring a project with CMake

● Create a build directory (“out-of-source-build” concept)
– mkdir build ; cd build

● Configure
– cmake [options] <source_tree>

● Build
– make

● Install
– make install

● The Build step is automatically called with 'make install'

Similar to Auto-tools

An Introduction to CMake/CTest
Jan Engels 9

Hello World project using CMake (1)

● Top-level project directory:
– CMakeLists.txt
– Sub-directory hello_lib:

● CMakeLists.txt
● hello.h
● hello.cc

– Sub-directory hello_app:
● CMakeLists.txt
● main.cc

/*hello.h*/
#ifndef _hello_h
#define _hello_h

class Hello {
public:
 void Print();
};

#endif

/*hello.cc*/
#include "hello.h"
#include <iostream>
using namespace std;

void Hello::Print() {
 cout<<"Hello,
World!”<<endl;
}

/*main.cc*/
#include <iostream>
#include "hello.h"

int main() {
 Hello().Print();
 return 0;
}

Hello Library

HelloWorld Application

An Introduction to CMake/CTest
Jan Engels 10

Hello World project using CMake (2)

CMakeLists.txt in hello_lib dir

Adds a library called Hello (libHello.a under Linux) from the source file hello.cc
ADD_LIBRARY(Hello hello)

CMakeLists.txt in hello_app dir

Make sure the compiler can find include files from our Hello library.
INCLUDE_DIRECTORIES(${PROJECT_SOURCE_DIR}/Hello)

Add binary called "helloWorld" that is built from the source file "main.cc".
The extension is automatically found.
ADD_EXECUTABLE(helloWorld main)

Link the executable to the Hello library.
TARGET_LINK_LIBRARIES(helloWorld Hello)

Top-Level CMakeLists.txt

PROJECT(HelloWorld)

ADD_SUBDIRECTORY(hello_lib)
ADD_SUBDIRECTORY(hello_app)

An Introduction to CMake/CTest
Jan Engels 11

CTest

● CTest
– Integrated testing in CMake
– Uses flexible CMake syntax
– Support for regular expressions (*nix style)
– Support for running custom commands
– Dashboard (CDash) for displaying test results in web page

– More on live demo..

An Introduction to CMake/CTest
Jan Engels 12

CTest

● CDash

An Introduction to CMake/CTest
Jan Engels 13

CTest

● CDash

An Introduction to CMake/CTest
Jan Engels 14

References

● References:

– http://www.cmake.org
– http://www.cdash.org

– Mastering CMake
● Ken Martin, Bill Hoffman
● Published by Kitware, Inc.
● ISBN: 1-930934-16-5

http://www.cmake.org/
http://www.cdash.org/

An Introduction to CMake/CTest
Jan Engels 15

Live DEMO

Engine

Vehicle

Car MotorbikeBicycle

Smoke Tests Unit Tests

Static Code Analysis TestsMemory Tests

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

