Introduction to Projects

Stefan Kluth
Max-Planck-Institut fiir Physik

Workshop on Advanced Programming Concepts
DESY, 8.10. - 13.10.12

Overview

* You all believe you can program (in C++)
* Object-oriented: why and how
» Lifetime of code and maintainance
 Working in a team
* “clean code”

* Majority of us are self-tought
 Programming vs software engineering
* This workshop tries to bridge the gap

 Try out some of the ideas presented here

10/09/12 Projects Intro

Structure
e Build teams of 6-8 people

* In each team work in “promiscous” pairs
 Teams sit together and collaborate

* Discuss tasks, brake down work in small pieces,
distribute work items in team

 Here: repeat every hour

« Teams guided by tutors
e Pair programming
e “driver” and “navigator”

e Change roles frequently

10/09/12 Projects Intro

Structure
» Test-first programming

« For a given “programming unit” write a unit test using a
testing framework, test fails

 Then write code to satisfy test

e Repeat until done
e Unit test framework:

 Organise and automate test running

« We use boost_test for C++ (see project code)
e Input data

« From other code

e Or make it up to get going (“mock-up”)

10/09/12 Projects Intro

Structure

 Code management with git (a la svn)
e clone/pull https://github.com/skluth/<project.git>

* Project version control in local repository

- Git add, git commit in small increments

- No interference with other developers
* Project collaboration via central repository
- Git pull, git push

- Git push fails when local repo not in sync with central,
need to pull and merge locally first

- Git tag, git push --tags for tagging

10/09/12 Projects Intro

https://github.com/skluth/

.netrc

For “git push https:/github.com/... ” you need to authenticate
Create a SHOME/.netrec file (chmod 600):
machine github.com

login <your github user name>
password <your github password>

Not the most secure but works for us.
You didn't use your online banking pw for github

10/09/12 Projects Intro

Structure

» “Continious integration”

 Make target compiles and runs unit test
executeables

e Make fails when tests fail

 Failing test only allowed in intermediate steps
* Only “push” working code

e Tests could fail due to other package: pull
changes, adapt your code (or fix other package)

* Not formally enforced

10/09/12 Projects Intro

Projects: INIParser

Read input data from simple config files (based on code “inih”)
Similar functionality to python ConfigParser

comment
[sectionl]
Item1 = value
Name = Tom

[section2]

Code is complete and working with tests. Needed by other
package RooAverageTools to parse inputs

github.com/skluth/INIParser.git

10/09/12 Projects Intro

Projects: RooAverageTools

Calculation of error weighted average from several measurements.
Consider statistical and systematic errors with correlations

See material on averaging

AverageDataParser.py: read input data, prepare for averaging
blue.py: matrix inversion solution

clsqAverage.py: solution using constrained fit
minuitAverage.py: solution using minuit fit

Provide C++/ROOT version of existing python code, use TVectorD
and TMatrixD(Sym) for linear algebra

C++: github.com/skluth/RooAverageTools.git
Python: github.com/skluth/AverageTools.git

10/09/12 Projects Intro 9

Projects: RooConstrainedFit

Implement linear least squares fit with constraints. Needed by
RooAverageTools contrained fit averaging method

See material on averaging for details
Clsq.py: classes for handling of constraints and of fit

Provide C++/ROOT version of existing python code, use TVectorD
and TMatrixD(Sym) for linear algebra

C++: github.com/skluth/RooConstrainedFit.git
Python: github.com/skluth/ConstrainedFit.git

10/09/12 Projects Intro 10

Projects: RooUnfold

ROOT based implementation of several unfolding methods with
a common interface.

Contains high level “acceptance tests” (a.k.a examples) but no
unit tests

See previous Terascale workshops on statistics for unfolding

Implement unit tests using boost_test for class methods.
For code under test try some refactoring

github.com/skluth/RooUnfold.git

10/09/12 Projects Intro 11

Pair programming
« Well established industry practice
 Advantages

* Avoids obvious ("stupid”) mistakes
e Cleaner more structured code with fewer errors
 Pass knowledge between team members

 Fewer distractions, higher attention level
e Disadvantages

e 2 FTEs instead of one for the same task?
 Both partners at similar level

e Distributed teams?

10/09/12 Projects Intro

12

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

