

Cold Magnets and Current Leads

H. D. Brueck DESY MKS

- □ Introduction
- □ Cold Magnets in Accelerator Modules (Cryomodule)
- Current Leads
- □ Status and Future Plans

A. Ballarino, Philippe Denis

R. Bandelmann, H. Brueck

Magnets in different Sections

116 superconducting Magnets Packages in the Accelerator magnets are used Accelerator Modules Cold Quadrupoles and 2 correction magnets \succ for bending and focussing of Warm magnets the electron beam 60 dipoles 400 guadrupoles 40 sextupoles/octupoles Injector and Bunch 530 correction magnets Compressor Undulators with permanent magnets In total about 650m \triangleright Main LINAC Collimation and Beam Distribution 0 Photon Beams 500 1000 1500 Undulators -1002000 -50 2500 0 3000 50 Length [m] 3500 warm and cold cold magnets warm magnets magnets and permanent magnets

Collimation and Beam Distribution

Accelerator Modules

Magnet Package Overview

current leads

- Each accelerator module contains a superconducting magnet package at the downstream end
- Consisting of:
 - ➤A superferric quadrupole
 - ➤Two correction dipoles
- The magnet package is cryogenically integrated into the 2K circuit
- An assembly of 6 current leads (non gas cooled) connects the magnets to warm current terminals
- A beam monitor (BPM), precisely coupled to the magnet package

The magnet design is done in collaboration with CIEMAT

The current leads are based on the CERN design used at LHC

EIFast-XFEL Workshop 9/10 May

2 K two-phase line

BPM

8

Magnet assembly

• A "superferric" quadrupole is a conventional iron based quadrupole with superconducting coils

• 35T/m at 50A, 170mm length

Quadrupole Parameters

Winding type	Superferric	
Iron yoke inner diameter	94.4	mm
Iron yoke outer diameter	270	mm
Nominal current	50	А
Nominal gradient	(35)	T/m
Magnetic length	169.6	mm
Number of turns	646 (34x19)	
Wire diameter (bare/insulated)	0.4/0.438	mm
Copper to superconductor ratio	1.35	
RRR	>70	
Filament diameter	35	micron
Twist pitch	50	mm
Iron yoke length	145	mm
Coil length	200.6	mm
Stored magnetic energy at 50A	1462	J
Self inductance at 50A	1.17	Н
Integrated gradient at 50A	5.976	Т
Integrated b6 at 50A	1.87	units
Integrated b10 at 50A	-2.75	units
Coil peak field	2.47	Т
Working point on load line at 4.2 K	45	%
Integrated gradient at 5 A	0.621	Т
Integrated b6 at 5 A	-1.79	units
Integrated b10 at 5 A	-2.71	Units
Saturation at 50 A (integrated)	(3.9)	%

Unit: 10⁻⁴•b₂ at 30mm

• Field quality very good

Saturation at 50A only 3.9%

Dipoles Parameters

INNER	OUTER	
cos-θ	cos-θ	
83.6	88.5	mm
85.66	90.56	mm
50	50	A
0.04	0.04	Т
203.7	205	mm
36	37	
0.7/1.03		mm
1.8		
<100		
<20		micron
~25		mm
140		mm
230	230	mm
0.96	1.07	mH
0.00815	0.00820	Tm
0.00748	0.00745	Tm
9.0	10.1	%
	INNER COS-θ 83.6 85.66 50 0.04 203.7 36 0.7/ 1 <1	INNEROUTERCOS-θCOS-θ83.688.585.6690.5650500.040.04203.720536370.7/1.031.8<100

One vertical and one horizontal deflecting dipole

Alignment and Measurements

- Alignment errors between Quadrupole and BPM below
 - > 0.3mm for x,y
 - ➤ 3 mrad for roll angle
- Magnetic axis and field angle must be measured for each individual magnet
 - Will be done warm
- Dowel pins holes in magnet package drilled on basis of magnetic measurements results
- Any BPM-Magnet pair can then be built

- □ XFEL requirements are very similar to current leads for CERN LHC corrector magnets (60A, from room temperature to 2K)
- □ CERN Design: Conduction cooled leads with 2 heat sinks
 - Heat sinks
 - ♦4-20K
 - **◆**50-75K
 - Hybrid conductor
 - Brass rod with cupper coating with isolating Capton® tube inside a stainless steel tube
- Contract with CERN made for the design and production of a prototype assembly

The current leads are based on the CERN design used at LHC

Conduction Cooled Current Leads

- Modified design by CERN especially for our requirements
- Heat sinks at 4-8K and 40-80K
- Heat load at maximum current:
 - ➢ 16 W at 70 K,
 - > 3.5 W at 4.5 K,
 - 240 mW 1.9 K with the maximum length
- □ Advantage
 - No gas flow control
 - 2K volume extents up to the warm feed through

Heat sink Connection to He tube by copper braide

Alternative: HTS Current Leads

Alternatively we consider HTS leads

Advantage

- very low heat loads onto the 2K level
- No gas flow control
- Disadvantage:
 - cold feed throughs necessary (2K, 30mbar to insulation vacuum), which might be risky! A failure would stop the accelerator for a long time
 - > Experience?

HTS Leads assembly

for the six leads combined leak to 80 K 8 - 16 W (at 50 A and 0 A). leak to 4.2 K approximately 120 mW (at any current) leak to 1.9 K approximately 25 mW (at any current)

- □ Production of magnets and leads in industry
- Tests and detailed measurements at DESY of each magnet package
 - Test in the magnet test hall warm and cold
 - horizontal cryostat especially designed for magnet tests
 - Cold: Integrated field strength, performance...
 - ➤ Warm: Magnetic axis and roll angle
- □ Final assembly into the Accelerator Module by industry
- Final cold tests of magnets and leads on module test stand in the AMTF
- Installation in tunnel

Time Schedule

Status & Outlook

- □ Where we are
 - Building prototype Magnets at CIEMAT for 3 prototype Accelerator Modules
 - ✤ ready in summer 2006
 - Building a prototype lead assembly at CERN, a 2nd later at DESY
 - We will Order a prototype HTS lead soon
 - Extensive tests of magnet and leads starting end of 2006
 - Horizontal cryostat specifications end 2006, ready end 2007?
- □ Outlook (based on assumed project start 2007)
 - Series Production of ~116 magnet packages & leads
 - Tender&Selection 2007-2008
 - Pre-series 2009
 - Production start 2010
 - One complete set per week
 - Installation in tunnel until end 2012