Warm Vacuum Systems

M.Seidel, T.Wohlenberg DESY, MVA

Outline

- some basics on accelerator vacuum; discussion on XFEL vacuum level
- warm sections **overview** and issues
- RF gun; bunch compressor
- transport lines; beam distribution
- collimator unit; water cooled Ti insert
- undulator vacuum system:
 - choice of material, intersection; cavity BPM; spont.
 radiation; pressure profile
- summary

Beam Vacuum

usually UHV (Ultra High) Vacuum systems

P ~ 10⁻⁹ mbar; storage ring: beam lifetime ~several 10h

standard air pressure 10^3 mbar $\rightarrow 12$ orders of magnitude!

extreme care has to be taken during production of components; no contaminations, oil etc.

in XFEL conditions somewhat relaxed because beam passes only once!

 $P \sim 10^{-7}..10^{-6}$ mbar is acceptable in transport lines; close to cold cavities pressure should be better ~10⁻⁹; particle free !

beam particles scatter at residual gas molecules \rightarrow loss of beam goal: loss/beam $\leq 10^{-9}$

 P_{max} =300kW \rightarrow P_{loss} < 0.3mW

warm vacuum – materials, components

- chamber materials:
 - stainless steel (special chambers eg. bunch compressor)
 - copper (pipes in transport lines, absorbers)
 - extruded aluminum ? (undulator)
- pumps:
 - mobile turbo-pump units
 - ion getter pumps (appx 500units)
 - Ti sublimation pumps
- chamber supports, flange connections, diagnostics, tech. interlock systems, all metal valves...

Overview XFEL, Warm Sections

Categories of Sections/Components

section	length	issues	
injectors I,II	111,5m	RF-guns: continuous R&D program, particle free, high complexity (WP19, WP8)	
compressors, diagnostic	160m	flat steel chambers, copper coating, narrow tolerances (WP19, WP8)	
collimator section	209m	precision collimator units, material: Ti, complex diagnostic section	
undulator chambers	713m	small aperture, low roughness, high conductivity	
beam distribution	1.737m	optimized for cost, low complexity, copper pipes	

RF Gun – Particle Source

- high accelerating gradient to counteract repelling space charge forces → large heat dissipation, good cooling essential to maintain dimensions!
- 1¹/₂ cell RF acc. structure, brazing in vacuum furnace
- cathode specially prepared, eg.Cs₂Te for low electron work-function; needs constantly low pressure ~10⁻¹⁰mbar to maintain properties

Bunch Compressor Section

dipole magnet

<u>desired:</u> varying compression ratio via varying bump strength/amplitude

 \rightarrow vacuum chamber: flat and wide aperture!

Compressor Chambers

- from steel sheets, laser beam welded, small μ_r
- particle free prepration (close to cold cavities)
- many diagnostics ports for beam monitoring, SR observation

installed

at FLASH

Collimation System

- purpose: avoid direct beam hits (mis-steered) or loss (halo) in the undulator (radiation may demagnetize permanent magnets)
- remove dark-current generated in cavities
- collimator should withstand beam hit for few bunches; made from Ti

Collimator Block - Titanium Insert

- Collimator Units ensure that mis-steered beam or dark-current cannot hit undulator magnets
- choose Ti for high stress resistance in case of mis-steered beam hit concept: three interchangeable apertures (holes)
- Ti insert with brazing connection to water cooled Cu block (continous loss of dark current possible); need to test brazing

Beam Distribution System

- length 1.7km; optimized for cost; ID 50mm circular pipes;
- high electrical conductivity required; material copper; brazing connection to CONFLAT flanges
- ion getter pumps (60l/s) every ~6m; est. pressure 5·10⁻⁹mbar
- issue: cleaning of the chambers and keeping oxidation at a minimum

inductive brazing of flange

Undulator Section Vacuum System

- each undulator section contains ~40 undulator units (5m) and 40 intersections (1.1m); length ~240m; 3 sections planned
- spontaneous X-ray radiation amounts to maximally 8W/m; absorbers needed!
- small aperture chamber (~9mm inner height) to allow for small magnet gaps → high field strength
- high conductivity; small roughness!
- small aperture leads to poor vacuum conductivity and rel. high pressure
- intersection (1.1m) with bellows unit, radiation absorber, cavity BPM, phase shifter (chicane to vary beam path length on nm scale), quadrupole
- for chamber two possible solutions under study: elliptical steel chamber or extruded Al profile

radiation parameters/geometry

	parameters (example)
beam/undulator	E=20GeV, B _{max} =1.3T, λ _u =48mm, K=6
spontaneous radiation	typ. opening angle: θ_x =150µm, θ_y =25µm shadow angle: ψ_x =500µrad, ψ_y =75µrad
radiation power	P'=6.5W/m on absorbers (LCLS: 22mW/m)
HOM Power:	P'=2W/m, unavoidable, with air cooling $\Delta T \approx 6^{\circ}$ C!

Options for Undulator Chamber Material

- steel tube difficult to find manufacturer; formed to elliptical shape, brazing connection (tolerances!) to water channel; μ_r critical!
- Al tube easier to make; integrated water channel; presumably higher roughness; tolerances critical for wall thickness; larger photon desorpt.
- optimization of coating/oxide layer in collaboration with swedish colleagues; vacuum quality of coating?

Al profile, test sample, integrated cooling

intersection between undulators – major components

layout of tapered absorber

Cavity BPM

principle:

offset beam excites dipole mode; strength of signal is prop. to beam offset

- cavity \rightarrow stronger signal, more precise than buttons
- frequency ~4..5GHz; possibly not multiple of 1.3GHz because of dark current

Cavity BPM – SPRING8(SCSS) Design

- TM011 cavity at 4.76GHz, brazed stainless steel, Q~130
- integrated TM010 cavity as charge monitor, ext. phase reference!
- much emphasize on ADC 11Bit at 238MHz (spring8 internal development!?), anticipated res. <1µm
- \rightarrow good prototype for us !

in beamline, with reference cavity

Mechanical Properties of Vacuum Pipe in Undulator

- thin oxide layer (dielectric) AI: 5nm, Cu: 1nm, Au:?
- roughness rms<300nm@1mm wavelength
- high el. conductivity, low outgassing, thin wall, water cooling

Overview Wakefield-Effects

unavoidable: resistive wakes from narrow pipe \rightarrow sets the scale for other effects

rms energy spread from I.wake:

M.Dohlus I. Zagorodnov:	resistiv (Al):		49.5 V/pC m
	geometric	absorber bellows unit flange gap long pumping slit	<mark>16 V/pC</mark> 5 V/pC 2.4 V/pC <0.2 V/pC
	oxid layer	Cu 1nm Al <mark>5nm</mark>	1.1 V/pC m 5.7 V/pC m
	roughness	Al 600nm(!)	9 V/pC m

 \rightarrow oxide layer is rel. important; above quoted numbers ambitious, consider Au coating \rightarrow collaboration with Swedish university, Lars Westeberg

conductance limited vacuum system

- pumps at a distance of *I*=6.1m
- small pipe is conductance limited;

conductance = <u>amount of gas (moles or molecules)</u> time · pressure difference [mbar I / mbar s]

gas equation $pV = nRT \rightarrow [mbar \ I]$ is a measure for the amount of gas!

is constant (293K)

conductance ~ d^3 \rightarrow strong scaling with pipe dimensions

pressure simulation with photodesorption

- this system is extremely conductance limited (c = 0.125 | m / s)
- expected average pressure $\approx 7 \cdot 10^{-7}$ mbar (AI), $\approx 10^{-7}$ mbar (SS)
- vacuum will improve from conditioning!

Status and Summary

- presently "cataloging" of all vacuum sections completed; detailed cost and manpower estimate available
- technologically difficult sections: undulator/collimator are under work to develop strategy (issues: tolerances, roughness, oxide layer, brazing exotic mat. combinations)
- technically complicated sections: bunch compressor flat chambers with tight tolerances; particle free preparation
- other sections standard technology Cu pipes; ion getter pumps etc.; although large quantity