Top pair and single top differential cross sections

Nikolaos Kidonakis (Kennesaw State University)

- $t\bar{t}$ and single top production channels
- Higher-order two-loop corrections
- $t\bar{t}$ cross section at LHC and Tevatron
- Top p_T and rapidity distributions
- *t*-channel and *s*-channel production
- tW^- , tH^- , and FCNC processes
- W production at large p_T

Top production partonic processes at LO

Top-antitop pair production

• $q\bar{q} \rightarrow t\bar{t}$

dominant at Tevatron

N. Kidonakis, DESY, Hamburg, July 2012

Single top quark production • *t* channel: $qb \rightarrow q't$ and $\bar{q}b \rightarrow \bar{q}'t$ $q(\bar{q}) \qquad q'(\bar{q}')$ dominant at Tevatron and LHC b t

• s channel: $q\bar{q}' \rightarrow \bar{b}t$ small at Tevatron and LHC

Higher-order corrections

QCD corrections significant for top pair and single top quark production Soft-gluon corrections from emission of soft (low-energy) gluons

Soft corrections: $\left[\frac{\ln^k(s_4/m^2)}{s_4}\right]_+$ with $k \leq 2n-1$, s_4 distance from threshold

Soft-gluon corrections are dominant near threshold

Resum these soft corrections - factorization and RGE

Complete results at NNLL-two-loop soft anomalous dimension NK, PRD 82, 114030 (2010); PRD 84, 011504 (2011) (tt) NK, PRD81, 054028 (2010); PRD 82, 054018 (2010); PRD 83,091503 (2011) (single top)

Approximate NNLO cross section from expansion of resummed cross section

This is the only calculation for partonic threshold at the double differential cross section level using the standard moment-space resummation in pQCD

Threshold approximation

Approximation works very well not only for Tevatron but also for LHC energies because partonic threshold is still important

only 1% difference between first-order approximate and exact corrections \rightarrow less than 1% difference between NLO approximate and exact cross sections Also true for differential distributions

For best prediction add NNLO approximate corrections to exact NLO cross section

Factorization and Resummation

Resummation follows from factorization properties of the cross section - performed in moment space

 $\sigma = (\prod \psi) H_{IL} S_{LI} (\prod J)$ *H*: hard-scattering function *S*: soft-gluon function

Use RGE to evolve soft-gluon function

$$\left(\mu\frac{\partial}{\partial\mu} + \beta(g_s)\frac{\partial}{\partial g_s}\right)S_{LI} = -(\Gamma_S^{\dagger})_{LB}S_{BI} - S_{LA}(\Gamma_S)_{AI}$$

 Γ_S is the soft anomalous dimension - a matrix in color space and a function of kinematical invariants s, t, u

Resummed cross section

$$\hat{\sigma}^{res}(N) = \exp\left[\sum_{i} E_{i}(N_{i})\right] \exp\left[\sum_{j} E_{j}'(N')\right] \exp\left[\sum_{i=1,2} 2 \int_{\mu_{F}}^{\sqrt{s}} \frac{d\mu}{\mu} \gamma_{i/i} \left(\tilde{N}_{i}, \alpha_{s}(\mu)\right)\right] \\ \times \operatorname{tr}\left\{H\left(\alpha_{s}\right) \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}'} \frac{d\mu}{\mu} \Gamma_{S}^{\dagger}\left(\alpha_{s}(\mu)\right)\right] S\left(\alpha_{s}\left(\frac{\sqrt{s}}{\tilde{N}'}\right)\right) \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}'} \frac{d\mu}{\mu} \Gamma_{S}\left(\alpha_{s}(\mu)\right)\right]\right\}$$

N. Kidonakis, DESY, Hamburg, July 2012

collinear and soft radiation from incoming partons

$$E_{i}(N_{i}) = \int_{0}^{1} dz \frac{z^{N_{i}-1}-1}{1-z} \left\{ \int_{1}^{(1-z)^{2}} \frac{d\lambda}{\lambda} A_{i}(\alpha_{s}(\lambda s)) + D_{i}\left[\alpha_{s}((1-z)^{2}s)\right] \right\}$$

purely collinear: replace $\frac{z^{N-1}-1}{1-z}$ by $-z^{N-1}$

factorization scale μ_F dependence controlled by $\gamma_{i/i} = -A_i \ln \tilde{N}_i + \gamma_i$

Noncollinear soft gluon emission controlled by the soft anomalous dimension Γ_S

determine Γ_S from coefficients of ultraviolet poles in dimensionally regularized eikonal diagrams

 Γ_S is process-dependent; calculated at two loops

We are resumming $\ln^k N$ - we can expand to fixed order and invert to get $\ln^k (s_4/m_t^2)/s_4$

Eikonal approximation

Feynman rules for soft gluon emission simplify

$$\bar{u}(p)\left(-ig_{s}T_{F}^{c}\right)\gamma^{\mu}\frac{i(p'+k'+m)}{(p+k)^{2}-m^{2}+i\epsilon} \to \bar{u}(p)\,g_{s}T_{F}^{c}\,\gamma^{\mu}\frac{p'+m}{2p\cdot k+i\epsilon} = \bar{u}(p)\,g_{s}T_{F}^{c}\,\frac{v^{\mu}}{v\cdot k+i\epsilon}$$

Perform calculations in momentum space and Feynman gauge

Complete two-loop results for

- soft (cusp) anomalous dimension for $e^+e^- \rightarrow t\bar{t}$
- $t\bar{t}$ hadroproduction
- *t*-channel single top production
- *s*-channel single top production
- $bg \to tW^-$ and $bg \to tH^-$
- direct photon production
- W and Z production at large p_T

Typical two-loop eikonal diagrams

NNLO approximate cross sections

NLO expansion

Define
$$\mathcal{D}_k(s_4) \equiv \left[\frac{\ln^k(s_4/M^2)}{s_4}\right]_+$$

$$\hat{\sigma}^{(1)} = \sigma^B \frac{\alpha_s(\mu_R)}{\pi} \left\{ c_3 \mathcal{D}_1(s_4) + c_2 \mathcal{D}_0(s_4) + c_1 \,\delta(s_4) \right\} + \frac{\alpha_s^{d_{\alpha_s}+1}(\mu_R^2)}{\pi} \left[A^c \mathcal{D}_0(s_4) + T_1^c \,\delta(s_4) \right]$$

where
$$c_3 = \sum_i 2A_i^{(1)} - \sum_j A_j^{(1)}$$
 and $c_2 = c_2^{\mu} + T_2$, with $c_2^{\mu} = -\sum_i A_i^{(1)} \ln\left(\frac{\mu_F^2}{M^2}\right)$
and

$$T_2 = \sum_i \left[-2A_i^{(1)} \ln\left(\frac{-t_i}{M^2}\right) + D_i^{(1)} - A_i^{(1)} \ln\left(\frac{M^2}{s}\right) \right] + \sum_j \left[B_j^{(1)} + D_j^{(1)} - A_j^{(1)} \ln\left(\frac{M^2}{s}\right) \right]$$

Also $A^{c} = \operatorname{tr} \left(H^{(0)} \Gamma_{S}^{(1) \dagger} S^{(0)} + H^{(0)} S^{(0)} \Gamma_{S}^{(1)} \right)$ $c_{1} = c_{1}^{\mu} + T_{1},$ with

$$c_1^{\mu} = \sum_i \left[A_i^{(1)} \ln\left(\frac{-t_i}{M^2}\right) - \gamma_i^{(1)} \right] \ln\left(\frac{\mu_F^2}{M^2}\right) + d_{\alpha_s} \frac{\beta_0}{4} \ln\left(\frac{\mu_R^2}{M^2}\right)$$

NNLO expansion

$$\begin{split} \hat{\sigma}^{(2)} &= \sigma^{B} \frac{\alpha_{s}^{2}(\mu_{R})}{\pi^{2}} \left\{ \frac{1}{2} c_{3}^{2} \mathcal{D}_{3}(s_{4}) + \left[\frac{3}{2} c_{3}c_{2} - \frac{\beta_{0}}{4} c_{3} + \sum_{j} \frac{\beta_{0}}{8} A_{j}^{(1)} \right] \mathcal{D}_{2}(s_{4}) \right. \\ &+ \left[c_{3}c_{1} + c_{2}^{2} - \zeta_{2}c_{3}^{2} - \frac{\beta_{0}}{2} T_{2} + \frac{\beta_{0}}{4} c_{3} \ln \left(\frac{\mu_{R}^{2}}{M^{2}} \right) + \sum_{i} 2A_{i}^{(2)} - \sum_{j} A_{j}^{(2)} + \sum_{j} \frac{\beta_{0}}{4} B_{j}^{(1)} \right] \mathcal{D}_{1}(s_{4}) \\ &+ \left[c_{2}c_{1} - \zeta_{2}c_{3}c_{2} + \zeta_{3}c_{3}^{2} + \frac{\beta_{0}}{4} c_{2} \ln \left(\frac{\mu_{R}^{2}}{s} \right) - \sum_{i} \frac{\beta_{0}}{2} A_{i}^{(1)} \ln^{2} \left(\frac{-t_{i}}{M^{2}} \right) \right. \\ &+ \sum_{i} \left[\left(-2A_{i}^{(2)} + \frac{\beta_{0}}{2} D_{i}^{(1)} \right) \ln \left(\frac{-t_{i}}{M^{2}} \right) + D_{i}^{(2)} + \frac{\beta_{0}}{8} A_{i}^{(1)} \ln^{2} \left(\frac{\mu_{F}^{2}}{s} \right) - A_{i}^{(2)} \ln \left(\frac{\mu_{F}^{2}}{s} \right) \right] \\ &+ \sum_{i} \left[B_{j}^{(2)} + D_{j}^{(2)} - \left(A_{j}^{(2)} + \frac{\beta_{0}}{4} (B_{j}^{(1)} + 2D_{j}^{(1)}) \right) \ln \left(\frac{M^{2}}{s} \right) + \frac{3\beta_{0}}{8} A_{j}^{(1)} \ln^{2} \left(\frac{M^{2}}{s} \right) \right] \mathcal{D}_{0}(s_{4}) \right\} \\ &+ \frac{\alpha_{s}^{d} \alpha_{s} + 2(\mu_{R})}{\pi^{2}} \left\{ \frac{3}{2} c_{3} A^{c} \mathcal{D}_{2}(s_{4}) + \left[\left(2c_{2} - \frac{\beta_{0}}{2} \right) A^{c} + c_{3} T_{1}^{c} + F^{c} \right] \mathcal{D}_{1}(s_{4}) \\ &+ \left[\left(c_{1} - \zeta_{2}c_{3} + \frac{\beta_{0}}{4} \ln \left(\frac{\mu_{R}^{2}}{s} \right) \right] A^{c} + c_{2} T_{1}^{c} + F^{c} \ln \left(\frac{M^{2}}{s} \right) + G^{c} \right] \mathcal{D}_{0}(s_{4}) \right\} \end{split}$$

where

$$F^{c} = \operatorname{tr}\left[H^{(0)}\left(\Gamma_{S}^{(1)\dagger}\right)^{2}S^{(0)} + H^{(0)}S^{(0)}\left(\Gamma_{S}^{(1)}\right)^{2} + 2H^{(0)}\Gamma_{S}^{(1)\dagger}S^{(0)}\Gamma_{S}^{(1)}\right]$$

$$G^{c} = \operatorname{tr} \left[H^{(1)} \Gamma_{S}^{(1)} {}^{\dagger} S^{(0)} + H^{(1)} S^{(0)} \Gamma_{S}^{(1)} + H^{(0)} \Gamma_{S}^{(1)} {}^{\dagger} S^{(1)} + H^{(0)} S^{(1)} \Gamma_{S}^{(1)} \right] + H^{(0)} \Gamma_{S}^{(2)} {}^{\dagger} S^{(0)} + H^{(0)} S^{(0)} \Gamma_{S}^{(2)} \right]$$

and c_3 , c_2 , c_1 , etc are from the NLO expansion

Two-loop universal quantities $A^{(2)}$, $B^{(2)}$, $D^{(2)}$ known

Two-loop process-dependent $\Gamma_S^{(2)}$ recently calculated for several processes

Additional purely collinear corrections of the form $(\ln^k N)/N$ provide very small contributions and do not improve the threshold approximation

$t\bar{t}$ cross section at the Tevatron

NNLO approx: 7.8% enhancement over NLO scale dependence greatly reduced used MSTW 2008 NNLO pdf

Comparison of various resummation/NNLO approx approaches

Tevatron 1.96 TeV, scale uncertainty included; pdf uncertainty not shown - same for all if same assumptions are used use $m_t = 173$ GeV unless otherwise indicated

NLO $6.74^{+0.36}_{-0.76}$ Kidonakis, PRD 82, 114030 (2010) $7.08^{+0.20}_{-0.24}$ Aliev et al, CPC 182, 1034 (2011) $7.13^{+0.31}_{-0.39}$ Ahrens et al, PLB 703, 135 (2011) $6.65^{+0.08}_{-0.41}$ Beneke et al, NPB 855, 695 (2012) ($m_t = 173.3$) $7.22^{+0.31}_{-0.47} \rightarrow 7.29$ at $m_t = 173$ Cacciari et al, PLB 710, 612 (2012) ($m_t = 173.3$) $6.72^{+0.24}_{-0.41} \rightarrow 6.78$ at $m_t = 173$

[See also Moch *et al* (2012) $7.27^{+0.41}_{-0.46}$ threshold + high-energy terms Brodsky & Wu (2012) ($m_t = 172.9$) $7.626 \rightarrow 7.602$ at $m_t = 173$ PMC]

partly exact NNLO (exact for $q\bar{q}$ plus approx for gg) Barnreuther *et al* (2012) ($m_t = 173.3$) $7.005^{+0.202}_{-0.310} \rightarrow 7.07$ at $m_t = 173$

The PRD 82 result is very close to the partly exact NNLO: 7.08 vs 7.07 with similar scale uncertainty

$t\bar{t}$ cross section at the LHC

NNLO approx: enhancement over NLO (same pdf) is 7.6% at 7 TeV; 7.8% at 8 TeV; 8.0% at 14 TeV

Top quark p_T distribution at Tevatron

Excellent agreement of NNLO approx results with D0 data

N. Kidonakis, DESY, Hamburg, July 2012

Top quark p_T distribution at the LHC

N. Kidonakis, DESY, Hamburg, July 2012

Top quark rapidity distribution at Tevatron

Top Forward-backward asymmetry

$$A_{\rm FB} = \frac{\sigma(Y>0) - \sigma(Y<0)}{\sigma(Y>0) + \sigma(Y<0)}$$

Asymmetry significant at the Tevatron

Theoretical result at Tevatron: $A_{\rm FB} = 0.052^{+0.000}_{-0.006}$

smaller than observed values

Top quark rapidity distribution at LHC

N. Kidonakis, DESY, Hamburg, July 2012

t-channel cross sections at LHC

t-channel total cross section at LHC

t-channel top and antitop p_T distributions at LHC

N. Kidonakis, DESY, Hamburg, July 2012

t-channel top quark production at Tevatron

Cross section for antitop *t*-channel production at Tevatron is identical

s-channel cross sections

At Tevatron $\sqrt{S} = 1.96$ TeV: $0.523^{+0.001+0.030}_{-0.005-0.028}$ pb for top; same for antitop

s-channel total cross section at LHC

NNLO approx: enhancement over NLO is $\sim 10\%$

Associated tW^- production at the LHC

NNLO approx corrections increase NLO cross section by $\sim 8\%$

Cross section for $\bar{t}W^+$ production is identical

Associated production of a top quark with a charged Higgs

bg-> tH⁻ at LHC NNLO approx (NNLL) $\tan\beta=30 \ \mu=m_{H^-}$

NNLO approx corrections increase NLO cross section by ~ 15 to $\sim 20\%$

FCNC processes

Single-top production via flavor-changing neutral currents Anomalous couplings in Lagrangian, e.g.

decrease of scale dependence, significant corrections over Born at Tevatron and HERA (e.g. 15 to 20% for $eu \rightarrow et$ at HERA)

Future studies for LHC energies and other couplings

W and Z production at large p_T - parton processes

W and Z hadroproduction useful in testing the SM and in estimates of backgrounds to Higgs production and new physics (new gauge bosons)

 p_T distribution falls rapidly as p_T increases

Partonic channels at LO

 $q(p_a) + g(p_b) \longrightarrow W(Q) + q(p_c)$

 $q(p_a) + \bar{q}(p_b) \longrightarrow W(Q) + g(p_c)$

Define $s = (p_a + p_b)^2$, $t = (p_a - Q)^2$, $u = (p_b - Q)^2$ and $s_4 = s + t + u - Q^2$

At threshold $s_4 \rightarrow 0$

Soft corrections

$$\left[\frac{\ln^l(s_4/p_T^2)}{s_4}\right]_+$$

New approximate NNLO from NNLL resummation: N. Kidonakis and R.J. Gonsalves, arXiv:1201.5265 [hep-ph]

Two-loop soft anomalous dimension

Two-loop eikonal diagrams for $qg \rightarrow Wq$

Determine $\Gamma_S^{(2)}$ from UV poles of two-loop dimensionally regularized integrals

Also for $q\bar{q} \rightarrow Wg$

NNLO approx for W production at the LHC

N. Kidonakis, DESY, Hamburg, July 2012

NNLO approx for W production at the Tevatron

N. Kidonakis, DESY, Hamburg, July 2012

Summary

- NNLL resummation for top quark pair and single top production
- $t\bar{t}$ production cross section
- top quark p_T and rapidity distributions
- single top cross sections and p_T distributions
- W production
- NNLO approx corrections are significant at the LHC and the Tevatron
- good agreement with LHC and Tevatron data
- future work on more differential distributions and on NNNLO soft-gluon corrections