

Karlsruher Institut für Technologie

Higgs Mechanism in Standard Model (II)

G. Quast, A. Raspereza Course "Higgs Physics"

Lecture 3, 03/05/2012

KIT – Universität des Landes Baden-Württemberg und

www.kit.edu

Nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Standard Model (Summary)

- Building blocks of Standard Model
 fermions : matter fields
 gauge bosons : force carriers
- Aesthetics of model :
 - classification of fields
 - U(1)⊗SU(2) symmetry
 → gauge interactions
- simple Lagrange formalism describes this very well but only for massless particles
- fermion and gauge boson terms break SU(2) symmetry
- model is fairly consistent with experimental data assuming massive fermion and weak boson fields
- \Rightarrow needs gauge invariant mechanism of mass generation

Higgs Mechanism

Consider SU(2) doublet of scalar complex fields

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

	T_3	Y	Q
ϕ^+	+1/2	1	1
ϕ^0	-1/2	1	0

Spontaneous Symmetry Breaking

4-Dimensional sphere of minima

 $\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = v^2$

Ground state $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$

Higgs Mechanism

Higgs Lagrangian

$$\mathcal{L}_H = \left(\partial_\mu \Phi^\dagger\right) \left(\partial^\mu \Phi\right) - V(\Phi^\dagger \Phi)$$

"Radial" excitations of vacuum:

Higgs mechanism

Impose local gauge invariance

$$\left(\partial_{\mu}\Phi^{\dagger}\right)\left(\partial^{\mu}\Phi\right) \Rightarrow \left(\mathcal{D}_{\mu}\Phi^{\dagger}\right)\left(\mathcal{D}^{\mu}\Phi\right)$$

$$\mathcal{D}_{\mu} = \partial_{\mu} + ig_1 \frac{Y}{2} B_{\mu} + ig_2 \frac{1}{2} \vec{\sigma} \cdot \vec{W}$$

Consider ground state (vacuum)

$$\left\langle \Phi \right\rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0\\ v \end{array} \right)$$

Generation of Gauge Boson Masses

The kinetic term in the Higgs Lagrangian

$$\left(\mathcal{D}^{\mu}\langle\Phi\rangle^{\dagger}\right)\left(\mathcal{D}_{\mu}\langle\Phi\rangle
ight)$$

Recall:

$$\frac{1}{4}g_2^2 v^2 W_{\mu}^+ W^{-,\mu} + \frac{1}{8}(g_1^2 + g_2^2) v^2 Z_{\mu} Z^{\mu}$$

Generation of Weak Boson Masses

$$\frac{1}{4}g_2^2v^2W_{\mu}^+W^{-,\mu} + \frac{1}{8}(g_1^2 + g_2^2)v^2Z_{\mu}Z^{\mu}$$

These are W and Z boson mass terms!

W and Z bosons acquire masses through interaction with the Higgs ground state (vacuum)!

Yukawa Interactions

Yukawa interactions ⇒ interactions between fermions and Higgs doublet

corresponding gauge invariant Lagrangian (lepton sector) :

$$\mathcal{L}_{Y,\ell} = \mathcal{G}_{Y,\ell} \left(\bar{\ell}_R \Phi^{\dagger} L_L + \bar{L}_L \Phi \ell_R \right)$$
$$L_L = \begin{pmatrix} \nu_L \\ \ell_L \end{pmatrix} \qquad \bar{L}_L = (\bar{\nu}_L, \ \bar{\ell}_L)$$

Generation of Fermion Masses

Consider Yukawa interactions between ground Higgs state (vacuum) and leptons

$$\mathcal{L}_{Y,\ell} = \mathcal{G}_{Y,\ell} \left(\bar{\ell}_R \langle \Phi \rangle^{\dagger} L_L + \bar{L}_L \langle \Phi \rangle \ell_R \right)$$

$$\Rightarrow \frac{v}{\sqrt{2}} \mathcal{G}_{Y,\ell} \left(\bar{\ell}_R \ell_L + \bar{\ell}_L \ell_R \right)$$

Mass terms generated!

Masses of charged leptons are given by

$$m_{\ell} = \frac{v}{\sqrt{2}} \mathcal{G}_{Y,\ell}$$

Generation of Fermion Masses

 $\mathcal{G}_{Y,\ell}$ - Yukawa coupling of lepton ℓ to Higgs field

Masses of down-type quarks are generated in similar way

Masses of up-type quarks are generated via Yukawa interactions with charge conjugate Higgs doublet

$$\Phi_c = -i\sigma_2 \Phi^* = \begin{pmatrix} -\phi^{0*} \\ \phi^{-} \end{pmatrix}$$

Destiny of Physical State (Higgs boson)

And what happens to physical state H (Higgs boson)?

Let's take look at kinetic term of \mathcal{L}_H $\mathcal{D}^{\mu}(\langle \Phi \rangle + \delta \Phi)^{\dagger} \mathcal{D}_{\mu}(\langle \Phi \rangle + \delta \Phi)$ $\langle \Phi \rangle + \delta \Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$ $\mathcal{D}_{\mu} = \partial_{\mu} + ig_1 \frac{Y}{2} B_{\mu} + ig_2 \frac{1}{2} \vec{\sigma} \cdot \vec{W}$

Higgs boson Interactions with W and Z

This generates additional terms :

Tri-linear Higgs - gauge boson interactions

 $\frac{1}{2}g_2^2 v W^{+,\mu} W_{\mu}^- H = \frac{2m_W^2}{v} W^{+,\mu} W_{\mu}^- H$

$$\frac{1}{4}(g_1^2 + g_2^2)vZ_{\mu}Z^{\mu}H = \frac{m_Z^2}{v}Z_{\mu}Z^{\mu}H$$

Quartic Higgs - gauge boson interactions

$$\frac{1}{4}g_2^2(W^{+,\mu}W^{-}_{\mu})H^2 = \frac{m_W^2}{v^2}(W^{+,\mu}W^{-}_{\mu})H^2$$
$$\frac{1}{8}(g_1^2 + g_2^2)Z_{\mu}Z^{\mu}H^2 = \frac{m_Z^2}{2v^2}Z_{\mu}Z^{\mu}H^2$$

Higgs boson Interactions with Fermions

Gauge invariant Yukawa interactions

 $\mathcal{L}_{Y,\ell} = \mathcal{G}_{Y,\ell} \left(\bar{\ell}_R (\langle \Phi \rangle + \delta \Phi)^{\dagger} L_L + \bar{L}_L (\langle \Phi \rangle + \delta \Phi) \ell_R \right)$ $\langle \Phi \rangle + \delta \Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$

generate not only fermion masses but also interactions between Higgs boson ${\cal H}$ and fermions

$$\mathcal{L}_{H\ell\ell} = \frac{\mathcal{G}_{Y,\ell}}{\sqrt{2}} H\left(\bar{\ell}_R \ell_L + \bar{\ell}_L \ell_R\right) = \frac{m_\ell}{v} H \bar{\ell} \ell$$

same relations hold for quarks!

Prominent Feature of Higgs Mechanism

Let us inspect couplings of Higgs boson to SM particles

 $g_{HWW} \sim m_W^2$

 $g_{HZZ} \sim m_Z^2$

 $g_{Hff} \sim m_f$

Higgs boson couples stronger to heavier particles

⇒ decays more often into heavier accessible particles

Higgs Boson Decay Branching Ratios

