Interpreting Higgs results

Adam Falkowski LPT Orsay

DESY, day 1 B.H.

based on:

Carmi,AA,Kuflik,Volansky [1202.3144] AA,Rychkov,Urbano [1202.1532] Djouadi,AA,Mambrini,Quevillon [1205.3169]

Outline

- Higgs observations
- 2 Higgs theory
- Fits
- 4 Invisible Partial Width
- Mhat if...

Motivaton, in case you need it...

- The SM Higgs with mass $m_h \ll 2m_W$ has many decay channels that are potentially observable at the LHC and Tevatron ($H \to ZZ^*$, $H \to \gamma \gamma$, $H \to b\bar{b} \ H \to WW^*$, $H \to \tau^+ \tau^-$).
- Also different production channels can be isolated (gluon fusion, vector boson fusion, W/Z and $t\bar{t}$ associated production)
- Rich Higgs physics available in near future
- If new physics exists, Higgs interactions likely to be modified
- If new physics restores naturalness, Higgs interactions are necessarily modified
- Measuring Higgs rates at the LHC may be the shortest route to new physics!

Hierarchy problem and Higgs physics

stolen from R. Rattazzi

Higgs

Observations

 $H \rightarrow \gamma \gamma$

- Significant background, but great mass resolution
- ullet Both ATLAS and CMS observe an excess near $m_h\sim 125$ GeV, ATLAS centered at 126 and CMS centered at 125
- In both case the best fit cross section at the peak exceeds the SM value, though the latter is well within uncertainties
- ullet CMS also observes an excess in inclusive $\gamma\gamma jj$ channel dominated by VBF production mode, corresponding to cross section well exceeding the SM one (though, again, uncertainties are still large)

- Very low background, great mass resolution
- ullet ATLAS has 3 events at $m_{4I} pprox 124 \ {
 m GeV}$
- ullet CMS has 2 events at $m_{4l} pprox 126$ GeV

$H \rightarrow WW^* \rightarrow 2/2\nu$

	Signal	WW	$WZ/ZZ/W\gamma$	$t\bar{t}$	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
$m_H = 125 \text{ GeV}$	25 ± 7	110 ± 12	12 ± 3	7 ± 2	5 ± 2	13 ± 8	27 ± 16	173 ± 22	174
$\stackrel{\sim}{\circ}$ $m_H = 240 \text{ GeV}$	60 ± 17	432 ± 49	24 ± 3	68 ± 15	39 ± 9	8 ± 2	36 ± 24	607 ± 63	629
$m_H = 125 \text{ GeV}$ $m_H = 240 \text{ GeV}$	6 ± 2	18 ± 3	6 ± 3	7 ± 2	4 ± 2	6 ± 1	5 ± 3	45 ± 7	56
$\dot{-}$ $m_H = 240 \text{ GeV}$	23 ± 9	99 ± 22	8 ± 1	73 ± 27	35 ± 19	6 ± 2	7 ± 7	229 ± 55	232
_ ರ $m_H = 125 \text{ GeV}$	0.4 ± 0.2	0.3 ± 0.2	negl.	0.2 ± 0.1	negl.	0.0 ± 0.1	negl.	0.5 ± 0.2	0
$m_H = 240 \text{ GeV}$	2.5 ± 0.6	1.1 ± 0.7	0.1 ± 0.1	2.6 ± 1.3	0.3 ± 0.3	negl.	0.1 ± 0.1	4.2 ± 1.7	2

- Significant background, poor mass resolution, better for exclusion than discovery
- No clear excess here, which begins to feel weird
- Bad luck, background misestimation, or something interesting going on?

Exclusion limits

- Low mass range excluded by Tevatron and LHC except for 122-127 GeV range
- Even lower mass range excluded by LEP,
- High mass range excluded by LHC, or highly disfavored by EWPT
- Within the SM, no more "elsewhere"!

$VH \rightarrow bb$ at Tevatron

- Both CDF (more) and D0 (less) observe broad $b\bar{b}$ excess around $m_{bb} \in (120,135)$ GeV associated with leptonically decaying W or Z
- Points to somewhat enhanced rate in VH production channel, the heavier Higgs, the larger cross section boost is needed
- Doesn't strongly favor any mass between 120 and 135 GeV

Experimentalists:

Not enough data to conclude the existence or non-existence of the Higgs boson

Theorists: Come on... it's 125 GeV

Tomorrow

the final answer

This talk:

Assuming ;-) Higgs exists at 125 GeV what's next?

Next

Is it the SM Higgs?

Higgs
Theory

Higgs effective theory

Define effective Higgs Lagrangian at $\mu \approx m_h \sim 125 \, GeV$. Couplings relevant for current LHC data

$$\mathcal{L}_{\text{eff}} = \frac{c_{V} \frac{2m_{W}^{2}}{v} h W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{m_{Z}^{2}}{v} h Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \bar{b} b - c_{\tau} \frac{m_{\tau}}{v} h \bar{\tau} \tau }{+ c_{g} \frac{\alpha_{s}}{12\pi v} h G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma} \frac{\alpha}{\pi v} h A_{\mu\nu} A_{\mu\nu} }$$

- Few theoretical prejudices here:
 - Assuming Higgs couples to SM fields only
 - Custodialy symmetry fixing $c_W=c_Z\equiv c_V$ (otherwise quadratically divergent contributions ΔT)
 - Scalar (rather than pseudoscalar) interactions only
- ullet Top already integrated out, contributing to c_g and c_γ
- SM predicts $1 = c_V = c_b \approx c_g$ and $c_\gamma = 2/9$
- Any of the couplings can be modified in specific scenarios beyond the SM
- ullet All LHC Higgs rates can be easily expressed as functions of the c_i couplings

Higgs Widths

Higgs decay widths relative to SM modified approximately as,

$$\frac{\Gamma(h \to b\bar{b})}{\Gamma_{SM}(h \to b\bar{b})} \simeq |c_b|^2$$

$$\frac{\Gamma(h \to WW^*)}{\Gamma_{SM}(h \to WW^*)} = \frac{\Gamma(h \to ZZ^*)}{\Gamma_{SM}(h \to ZZ^*)} \simeq |c_V|^2$$

$$\frac{\Gamma(h \to gg)}{\Gamma_{SM}(h \to gg)} \simeq |c_g|^2$$

$$\frac{\Gamma(h \to \gamma\gamma)}{\Gamma_{SM}(h \to \gamma\gamma)} \simeq \left|\frac{\hat{c}_{\gamma}}{\hat{c}_{\gamma,SM}}\right|^2$$
(1)

where, taking into account W loop and assuming $m_h \approx 125$ GeV , $\hat{c}_\gamma \approx \frac{c_\gamma}{c_V} - \frac{c_V}{c_V}$, and $\hat{c}_\gamma, s_M \approx -0.8$

For $m_h \sim 125$ GeV total Higgs width scales as

$$\frac{\Gamma_{tot}}{\Gamma_{tot, \rm SM}} \approx 0.61 c_b^2 + 0.24 c_V^2 + 0.09 c_g^2 + 0.06 c_\tau^2 \equiv c_{tot}^2$$

Assuming $H \rightarrow bb$ dominates Higgs widths

$$R_{VV^*} \equiv \frac{\sigma(pp \to h) \text{Br}(h \to ZZ^*)}{\sigma_{SM}(pp \to h) \text{Br}_{SM}(h \to ZZ^*)} \simeq \left| \frac{c_g c_V}{c_{tot}} \right|^2,$$

$$R_{\gamma\gamma} \equiv \frac{\sigma(pp \to h) \text{Br}(h \to \gamma\gamma)}{\sigma_{SM}(pp \to h) \text{Br}_{SM}(h \to \gamma\gamma)} \simeq \left| \frac{c_g \hat{c}_{\gamma}}{\hat{c}_{\gamma,SM}c_{tot}} \right|^2,$$

$$R_{\gamma\gamma}^{VBF} \equiv \frac{\sigma(pp \to hjj) \text{Br}(h \to \gamma\gamma)}{\sigma_{SM}(pp \to hjj) \text{Br}_{SM}(h \to \gamma\gamma)} \simeq \left| \frac{c_V \hat{c}_{\gamma}}{\hat{c}_{\gamma,SM}c_b} \right|^2.$$

$$R_{b\bar{b}}^{Tev} \equiv \frac{\sigma(p\bar{p} \to Vh) \text{Br}(h \to b\bar{b})}{\sigma_{SM}(p\bar{p} \to Vh) \text{Br}_{SM}(h \to b\bar{b})} \simeq \left| \frac{c_V^2 c_b^2}{c_{tot}^2} \right|, \tag{2}$$

Effective Theory Interpretation

$$\mathcal{L}_{\text{eff}} = \frac{c_{V} \frac{2 m_{W}^{2}}{v} h W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{m_{Z}^{2}}{v} h Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \bar{b} b - c_{b} \frac{m_{\tau}}{v} h \bar{\tau} \tau }{ + c_{g} \frac{\alpha_{s}}{12 \pi v} h G_{\mu \nu}^{a} G_{\mu \nu}^{a} + c_{\gamma} \frac{\alpha}{\pi v} h A_{\mu \nu} A_{\mu \nu} }$$

- Carmi+ [1202.3144]: determine the region of effective theory parameter space favored by current Higgs data
- Question whether the current LHC data are consistent with the SM Higgs
- Question whether they favor or disfavor any particular BSM scenario
- Of course at this stage one cannot make very strong statements about Higgs couplings
- Consider it warm-up exercise in preparation for better statistics
- Recently similar approach in Azatov+ [1202.3415], Espinosa+ [1202.3697], Giardino+ [1203.4254], Rauch [1203.6826], Ellis and You [1204.0464], Farina+ [1205.0011], Klute+ [1205.2699]

Fits assuming $m_h = 125 \text{ GeV}$

Fits assuming $m_h = 125 \text{ GeV}$

- We consider 2D planes in the parameter space
- Fixing all but 2 parameters (not marginalizing over) and fitting the remaing 2
- 1 sigma bands for 5 most sensitive search channels shown
- \bullet Combined = $\Delta\chi^2 <$ 6, corresponding to 95% CL for 2 degrees of freedom

Fits assuming $m_h = 125 GeV$

- Only dimension-5 Higgs couplings allowed to vary (motivated if new physics enters only via loops)
- On this plane Tevatron never within 1 sigma band
- ullet Good fit if the $c_{
 m g}$ and c_{γ} simultaneously enhanced

Fits assuming $m_h = 125 GeV$

- Composite Higgs inspired parametrization (but couplings to fermions and gauge boson allowed to vary independently)
- Fermiophobic Higgs ($c_b = 0$) disfavored
- Apart from SM-like Higgs, another favored region where sign of Higgs coupling to fermions flipped

Scalar partner toy model

- Very toy "natural" model: just one scalar top partner (this is not SUSY, where at least two scalar partners are needed)
- Top partner interactions with Higgs to cancel top quadratic divergences

$$-(yHQt^{c}+\text{h.c.})-|\tilde{t}|^{2}(M^{2}+2y^{2}|H|^{2}).$$

- Only one free parameter: top partner mass $m_{\tilde{t}}^2 = M^2 + y^2 v^2$
- New contributions to effective dimension 5 Higgs interactions

$$rac{c_{
m g}}{c_{
m g,SM}} = rac{c_{\gamma}}{c_{\gamma,{
m SM}}} \simeq 1 + rac{m_t^2}{2m_{ ilde{t}}^2}$$

Fermion partner model

- For fermionic top partner, non-renormalizable interactions with Higgs needed to cancel top quadratic divergence
- Simple model inspired by T-parity conserving Little Higgs

$$-(y f \sin(|H|/f)Qt^{c} + h.c.) - y f \cos(|H|/f)TT^{c}$$

- Again only one free parameter: top partner mass $m_T = yf \cos(v/\sqrt{2}f)$
- New contributions to effective dimension 5 Higgs interactions

$$rac{c_g}{c_{g,\mathrm{SM}}} = rac{c_{\gamma}}{c_{\gamma,\mathrm{SM}}} \simeq 1 - rac{m_t^2}{m_T^2} \,,$$

- Beginning of a beautiful friendship
- More Higgs data from LHC may favor/disfavor particular BSM scenarios...
- ...or just confirm the SM again

$$\mathcal{L}_{eff} = c_{V} \frac{2m_{W}^{2}}{v} h W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{m_{Z}^{2}}{v} h Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \bar{b} b - c_{b} \frac{m_{\tau}}{v} h \bar{\tau} \tau$$

$$+ c_{g} \frac{\alpha_{s}}{12\pi v} h G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma} \frac{\alpha}{\pi v} h A_{\mu\nu} A_{\mu\nu}$$

$$+ c_{\chi} h \bar{\chi} \chi$$

- Extending effective theory to add invisible width
- \bullet Here χ is a new collider stable particle, possibly constituting part of all of dark matter in the Universe
- Exisiting LHC data already constraint the invisible width Djouadi, AA, Mambrini, Quevillon [1205.3169]

- CMS monojet search EXO-11-059 updated to 5 fb-1
 - ullet at least 1 jet with $p_T^j>110$ GeV and $|\eta^j|<2.4;$
 - at most 2 jets with $p_T^j > 30$ GeV;
 - no isolated leptons;
 - missing transverse momentum $p_T^{
 m miss} \ge 200-400$ GeV.
- Event yield dominated by backgrounds (mostly $Z \to \nu \nu + {\rm jets}$ and $W \to \nu I + {\rm jets}$) with systematics at about 10%.
- \bullet For example, for $p_T^{\rm miss} \geq$ 350 GeV CMS observes 1142 events vs predicted background 1224 \pm 101
- \bullet For Higgs with SM cross section fully invisible additional \sim 100 events, comparable to errors

$$(red = ggH, blue = VBF)$$

$p_T^{ m miss}$	$N_{ m inv}^{ m ggF}$	$N_{ m inv}^{ m VBF}$	$\Delta N_{ m Bkg}$	$R_{ m inv}^{ m exp}$	$R_{ m inv}^{ m obs}$
200	630	260	~1200	2.6	1.8
250	250	110	~380	2.0	1.3
300	110	50	~170	2.1	2.2
350	46	25	101	2.8	1.6
400	22	13	~70	3.8	2.3

$$R_{
m inv}^{
m ggF} \equiv rac{\sigma(gg o h)}{\sigma_{SM}(gg o h)} {
m Br}(h o {
m inv}) \leq 1.9$$
 @ 95%CL

$$R_{\mathrm{inv}}^{\mathrm{VBF}} \equiv \frac{\sigma(qq \to hqq)}{\sigma_{SM}(qq \to hqq)} \mathrm{Br}(h \to \mathrm{inv}) \leq 4.3$$
 @ 95%CL

Combining (assuming SM proportions of ggF and VBF),

$$R_{
m inv} \equiv rac{\sigma(pp
ightarrow h) {
m Br}(h
ightarrow {
m inv})}{\sigma(pp
ightarrow h)_{SM}} < 1.0 (1.3)$$
 @ 90(95)%*CL*

(Ignoring theory errors)

$$R_{
m inv} \equiv rac{\sigma(pp
ightarrow h) {
m Br}(h
ightarrow {
m inv})}{\sigma(pp
ightarrow h)_{SM}} < 1.0 (1.3)$$
 @ 90(95)%*CL*

- No direct constraints on the invisible franching fraction yet if Higgs produced with the SM rate
- However if Higgs rate enhanced (as for example in the presence of the 4th chiral generation) then our analysis provides non-trivial constraints
- This was just a recast of the large extra dimension search. A designated search could give better bounds?
- Indirectly, a better bound ${\rm Br}(h \to {\rm inv}) < 0.4$ from observation of visible Higgs decays Giardino+ [1203.4254]
- Interesting interplay between LHC and direct dark matter detection in the context of Higgs portal models

One more thing...

- ullet Current combined Higgs data allow, while Tevatron and VBF $\gamma\gamma$ channel in CMS favor increased Higgs coupling to WW and ZZ
- What if indeed $c_V > 1$?

What if $c_V > 1$?

- If SM Higgs doublet mixes with a singlet or another doublet, then always $c_V = \cos \alpha < 1$. Thus enhancement impossible in typical SUSY models.
- For Higgs being a pseudo-Goldstone boson of any compact coset (Little Higgs and composite Higgs), also $c_V = \cos(v/f) < 1$. Again, enhancement of c_V impossible
- ullet Low et al [0907.5413] : sum rule proving $c_V>1$ implies charge-2 Higgs
- AA et al [1202.1532]: stronger sum rule (assuming custodial symmetry)

$$1-c_V^2 pprox rac{v^2}{6\pi} \int_0^\infty rac{ds}{s} \left(2\sigma_{I=0}^{
m tot}(s) + 3\sigma_{I=1}^{
m tot}(s) - 5\sigma_{I=2}^{
m tot}(s)
ight).$$

 $c_V > 1$ implies enhancement of isospin 2 channel of WW scattering

Quintuplet Higgs?

Simplest realization of isospin 2 enhancement

- Quintuplet of weakly coupled scalars $Q = (Q^{--}, Q^{-}, Q^{0}, Q^{+}, Q^{++})$
- Coupled to electroweak gauge bosons in custodially invariant way

$$\frac{g_Q}{v} \left\{ \sqrt{\frac{2}{3}} Q^0 \left(m_W^2 W_\mu^+ W_\mu^- - m_Z^2 Z_\mu^2 \right) + \left(Q^{++} m_W^2 W_\mu^- W_\mu^- + \sqrt{2} Q^+ m_W m_Z W_\mu^- Z_\mu + \text{hc} \right) \right\}$$

Sum rule fulfilled for

$$g_Q^2 = \frac{6}{5} \left(c_V^2 - 1 \right)$$

Quintuplet and WW scattering

- What is special about $g_Q^2 = 6/5(c_V^2 1)$?
- Quintuplet, much like Higgs, contributes to WW scattering but, unlike Higgs, it has opposite couplings to W and Z
- ullet For generic ab o cd process in the limit g' o 0

$$A(s,t,u)\delta^{ab}\delta^{cd} + A(t,s,u)\delta^{ac}\delta^{bd} + A(u,t,s)\delta^{ad}\delta^{bc}$$

For example $A_{W^+W^- \to ZZ} = A(s, t, u)$, $A_{W^+W^+ \to W^+W^+} = A(t, s, u) + A(u, t, s)$, etc

• Isospin singlet and quintuplet contribute as Alboteanu et al [0806.4145]

$$A(s,t,u) = \frac{s}{v^2} \left(1 - c_V^2 \frac{s}{s - m_h^2} \right) + \frac{g_Q^2}{v^2} \left(\frac{s^2}{3(s - m_Q^2)} - \frac{t^2}{2(t - m_Q^2)} - \frac{u^2}{2(u - m_Q^2)} \right)$$

• For $s \gg m_{h,Q}^2$

$$A(s,t,u) \approx \frac{s}{v^2} \left(1 - c_V^2 + \frac{5g_Q^2}{6}\right)$$

Higgs overshoots unitarization, but for $g_Q^2=6/5(c_V^2-1)$ quintuplet restores unitary behavior as long as m_Q is not too large

Renormalizable Model

- Quinituplet can be part of renormalizable Higgs sector provided one allows for higher-than-doublet representations under $SU(2)_W$ The model is the one proposed long ago by Georgi and Machacek (Georgi, Machacek [(1985)]).
- Higgs sector contains:
 - Usual Higgs doublet H transforming as $\mathbf{2}_{1/2}$,
 - ullet One real triplet ϕ transforming as ${f 3}_0$,
 - One complex triplet Δ transforming as $\mathbf{3}_1$.
- Doublet can be recse into (2,2) under global $SU(2)_L \times SU(2)_R$. Two triplets can be combined into (3,3) under $SU(2)_L \times SU(2)_R$ and custodial isospin is preserved by triplet vevs if they are equal
- After electroweak breaking, 2 ⊗ 2 → 3 ⊕ 1, and 3 ⊗ 3 → 5 ⊕ 3 ⊕ 1, so after electroweak breaking we're left with 1 isospin quintuplet, 2 triplets (one eaten) and 2 singlets
- More general Higgs representations under $SU(2) \times SU(2)$ studied in Low,Lykken [1005.0872]

Renormalizable Model

Embedding of the fields

$$H = \begin{pmatrix} iG_{(2)}^+\\ \frac{vc_{\beta} + H_{(2)} - iG_{(2)}^0}{\sqrt{2}} \end{pmatrix},$$

$$\phi = \begin{pmatrix} \frac{1}{\sqrt{2}} (Q^{+} - iG_{(3)}^{+}) \\ \frac{vs_{\beta}}{2\sqrt{2}} + \sqrt{\frac{1}{3}} H_{(3)} - \sqrt{\frac{2}{3}} Q^{0} \\ \frac{1}{\sqrt{2}} (Q^{-} + iG_{(3)}^{-}) \end{pmatrix} \Delta = \begin{pmatrix} Q^{++} \\ \frac{1}{\sqrt{2}} (Q^{+} + iG_{(3)}^{+}) \\ \frac{vs_{\beta}}{2\sqrt{2}} + \sqrt{\frac{1}{3}} H_{(3)} + \sqrt{\frac{1}{6}} Q^{0} - \frac{1}{\sqrt{2}} iG_{(3)}^{0} \end{pmatrix}.$$

Higgs vev distributed between doublet and triplet, parametrized by eta Isospin triplets and singlets mix

$$G_{(2)} = c_{\beta}G - s_{\beta}A$$
 $G_{(3)} = s_{\beta}G + c_{\beta}A$

$$H_{(2)} = c_{\alpha}h - s_{\alpha}H$$
 $H_{(3)} = s_{\alpha}h + c_{\alpha}H$

where G is eaten while A, h, H are physical.

Phenomenology of doublet-triplet in view of tomorrow's Higgs results AA,Zupan [to appear]

Higgs phenomenology

- In the custodial limit, Higgs potential has 7 free parameters, 2 of which are fixed
 - 2 mixing angles α , β
 - 4 masses $m_h = 125$ GeV, m_H , m_A , m_Q
 - 4 masses $m_h = 125 \text{ GeV}$, m_H , m_A , m_b • vev v = 246 GeV
- \bullet Higgs phenomenology strongly affected for $\alpha,\beta\neq 0$
- Higgs coupling to electroweak gauge bosons modified from the SM value,

$$c_V = c_{\alpha}c_{\beta} + \sqrt{8/3}s_{\alpha}s_{\beta}$$

can be smaller or larger than 1. Maximum $\sqrt{8/3}$ for $\alpha = \beta = \pi/2$

• Higgs coupling to fermions also modified

$$c_b = c_\alpha/c_\beta$$

can be smaller or larger than 1. Higgs decay width to gluons modified

$$\delta c_{
m g} pprox c_{
m b} - 1$$

• Charge 1 and 2 Higgses affecting Higgs decay to photons

$$\delta c_{\gamma} = \frac{2(c_b - 1)}{9} + \frac{g_{hA^*A}}{24} + \frac{5g_{hQ^*Q}}{24}$$

$$g_{hA^*A} = \left(c_{\alpha}c_{\beta} + \sqrt{8/3}s_{\alpha}s_{\beta}\right) + \frac{m_h^2}{m_A^2} \frac{2\sqrt{6}c_{\beta}^3s_{\alpha} + 3c_{\alpha}s_{\beta}^3}{6c_{\beta}s_{\beta}}$$

$$g_{hQ^*Q} = \sqrt{\frac{2}{3}} \frac{s_{\alpha}}{s_{\beta}} \left(2 + \frac{m_h^2}{m_Q^2}\right) + \frac{m_A^2}{m_Q^2} \frac{c_{\beta}(-2\sqrt{6}c_{\beta}s_{\alpha} + 3c_{\alpha}s_{\beta})}{s_{\beta}}$$

Summary

- The puzzle of electroweak symmetry breaking is about to be solved
- Hints from the LHC and other experiments consistently point to weakly coupled electroweak symmetry breaking with a light Higgs boson
- Measuring Higgs coupling may soon give us strong hints favoring or disfavoring particular models beyond the Standard Model
- If data clearly points to $c_V > 1$, all hands on board to search for 5 more Higgs bosons!
- Tomorrow is going to be exciting...