scale setting in lattice QCD

Gregorio Herdoíza

IFT, UAM

UNIVERSIDAD AUTONOMA

Lattice Practices 2012 DESY Zeuthen, Oct. 11, 2012

outline

scale setting

- general considerations
- examples of intermediate reference scales
- examples of scale setting observables
- ► comparison

DESY Zeuthen, 11-10-12

DESY Zeuthen, 11-10-12

QCD

action :

$$S[\psi,\bar{\psi},A] = \frac{1}{g^2} \int d^4x \operatorname{tr} [F_{\mu\nu}(x)F_{\mu\nu}(x)] + \sum_{t=1}^{N_t} \int d^4x \, \bar{\psi}^{(t)}(x) (\gamma_{\mu} D_{\mu} + m^{(t)}) \psi^{(t)}(x)$$

parameters : $g, m^{(f)}$

- determined from matching the theory to experimental measurements
- ... applies more generally to the Standard Model

renormalisable theory :

a finite number of experimental measurements is sufficient to set the parameters and to make predictions ...

Lattice QCD

regularisation of QCD on a lattice :

- lattice spacing $a: a^{-1}$ is a UV cutoff
- ▶ x = an, $n_i = 0, ..., N$, L = Na

a lattice action :

$$S[\psi, \bar{\psi}, U] = \frac{\beta}{3} \sum_{n} \operatorname{Re} \operatorname{tr} [1 - U_{\mu\nu}(n)] + \sigma^4 \sum_{t=1}^{N_t} \sum_{n} \bar{\psi}^{(t)}(n) (D + m_0^{(t)}) \psi^{(t)}(n)$$

$$\beta = \frac{\delta}{g_0^2}$$
bare (input) parameters : g_0 , $am_0^{(t)}$

$$N = L/\sigma$$

- only dimensionless combinations appear
- ... in particular, the value of *a* in physical units is not known a priori ...
- a is a function of the bare parameters

DESY Zeuthen, 11-10-12

Lattice QCD

$$S[\psi, \bar{\psi}, U] = \frac{\beta}{3} \sum_{n} \operatorname{Re} \operatorname{tr} [1 - U_{\mu\nu}(n)] + a^{4} \sum_{t=1}^{N_{t}} \sum_{n} \bar{\psi}^{(t)}(n) (D + m_{0}^{(t)}) \psi^{(t)}(n)$$

N = L/a

bare (input) parameters : g_0 , $am_0^{(f)}$ renormalisable theory :

a finite number of experimental measurements is sufficient to set the parameters and to make predictions ...

• remove the cutoff : $a \rightarrow 0$

how is this done?

notation

- ▶ O is any observable
- S is an observable used in the scale setting

e.g. M_{Ω} , f_{π} , f_{K} , ...

 $\blacktriangleright \rho$ is an observable used to relate different lattice spacings

reference scale, intermediate scale, scaling variable

e.g. r₀, t₀, w₀,...

- R is a ratio of observables
- O^{phys} refers to O at the physical point
- O^{exp} refers to the experimental value of O
- O^{ref} refers to O at some reference point
- for simplicity, assume $[S] = [\rho] = mass$

e.g. $\rho = 1/r_0$ and $a \times \rho = (r_0/a)^{-1}$

continuum limit scaling

► fix the "physical situation" at a reference point:

```
i.e. for every value of g_0, fix (L\rho)|_{ref}, (m_R^{(f)}/\rho)|_{ref}
```

• study the dependence of $\frac{O}{\rho}$ on the lattice spacing via $a \rho$

continuum limit scaling

► fix the "physical situation" at a reference point:

i.e. for every value of g_0 , fix $(L\rho)|_{\text{ref}}$, $(m_R^{(f)}/\rho)|_{\text{ref}}$

• study the dependence of $\frac{O}{\rho}$ on the lattice spacing via $\alpha \rho$

example :

- $N_{\rm f}=2$ sea quarks $\rightsquigarrow m_\ell=m_u=m_d$
- β = 3.80, 3.90, 4.05, 4.20
- scaling variable : $\rho = r_0^{-1}$
- measurements of $aO = am_{\pi}$ and r_0/a
- ► reference point : $L\rho = L/r_0 \approx 4.5$ $m_{\ell}^{\rm R}/\rho = m_{\ell}^{\rm R}r_0 \approx 0.11$

[ETMC, 1010.3659]

continuum limit scaling

► fix the "physical situation" at a reference point:

i.e. for every value of g_0 , fix $(L\rho)|_{\text{ref}}$, $(m_R^{(f)}/\rho)|_{\text{ref}}$

• study the dependence of $\frac{O}{\rho}$ on the lattice spacing via $\alpha \rho$

- remove the cutoff : the continuum limit result should be "universal"
- observed dependence of a on β = 6/g₀²
 in order to keep the "physical situation fixed"
 → g₀(a) and m₀(a)
- scaling violations depend on the choice of the reference point
- ▶ so far, we did not use the actual value of *a* ...

[[]ETMC, 1010.3659]

contact with experiment

We have seen

- that the bare parameters depend on a
- ▶ how to remove the cutoff *a*⁻¹

but we also want to make contact with experiments, make predictions ...

- a finite number of experimental measurements is sufficient to set the parameters and to make predictions ...
- we need $N_{\rm f}$ experimental inputs to set the quark masses in physical units
- and one more for the lattice spacing a

→ "setting the scale"

what about the coupling?

renormalisation group

In the scaling analysis of the continuum limit, the "physical situation" is fixed when changing the lattice spacing

→ imposed via a Callan-Symanzik equation

illustration : β function in terms of bare quantities

$$\beta(g_0) \equiv \frac{\partial g_0(a)}{\partial \log(a)}$$

perturbative expansion of $\beta(g_0)$ around $g_0 = 0$

$$\beta(g_0) = -g_0^3(b_0 + b_1g_0^2 + \dots)$$

solution is given by

$$\sigma = \frac{1}{\Lambda_{\text{lat}}} \left(b_0 g_0^2(\sigma) \right)^{-\frac{b_1}{2b_0^2}} \exp\left(-\frac{1}{2b_0 g_0^2(\sigma)}\right) \left(1 + \mathcal{O}(g_0^2)\right)$$

 $\rightsquigarrow\,$ illustrates the connection between " setting the scale" and setting the coupling

we want to establish this connection non-perturbatively

DESY Zeuthen, 11-10-12

the determination of the lattice scale a allows the conversion of O into physical units

How is this done for lattice QCD?

- (i) take any dimensionful observable S
- (ii) bring S to the point where

$$\frac{m_q}{S(am_q)} = \left(\frac{m_q}{S}\right)^{\rm phys}$$

$$[aS(am_q)] \rightarrow [aS]^{phys}$$

(iii) match S to its experimental value

$$[\alpha S]^{\text{latt, phys}} \equiv \alpha \times S^{\text{exp}}$$

DESY Zeuthen, 11-10-12	2
------------------------	---

- conceptually rather simple but not easy in practice
- remarks on step (iii)
 - (iii) match S to its experimental value:

 $[aS]^{\text{latt, phys}} \equiv a \times S^{\text{exp}}$

- S in I.h.s and r.h.s described by the same theory
- r.h.s known accurately
- I.h.s at the physical point
- I.h.s can be computed accurately
- cutoff effects on l.h.s
- mass-independent scale setting : $a(g_0)$

for all ensembles at a given g_0 , the lattice spacing in physical units is the same

- ► remarks on step (ii)
 - control of statistical and systematic uncertainties

depend little on m_q

precision in step (ii)

- systematic uncertainties
 - number of dynamical flavours (u,d,s,c,... quarks) $N_{\rm f} = 0; 2; 2 + 1; 2 + 1 + 1$

partial quenching

- cutoff effects: lattice spacing *a* O(a) improvement, continuum limit broken symmetries at $a \neq 0$ $m_a \ll 1/a$
- range of quarks masses : simulation/physics applicability of χ PT, HQET, NRQCD, ...
- finite size effects : lattice size L
- renormalisation
- isospin breaking : $m_u \neq m_d$, electromagnetism
- statistical errors
 - autocorrelations

more effects become relevant with increasing precision

 $m_{\rm PS}L \gg 1$

non-perturbative

choice of S

remark on (i) : any *S* ...

- ► S can suffer from practical or conceptual imperfections
- try to avoid introducing large uncertainties into observables of interest via the scale setting

 \rightarrow choose S carefully ... and make cross-checks

implications

once a is known : obtain dimensionful observables in physical units

useful at the tuning stage : fix the bare parameters

reference scale ρ

$r_0, r_1, t_0, w_0, \ldots$

reference scale ρ

express lattice results (in lattice units)

in terms of a reference scale ρ

- compare data from different lattice spacing
- perform the continuum extrapolation
- useful when ρ can be determined accurately

Sommer scale : r_0

[R. Sommer, hep-lat/9310022]

- hadronic length scale
- determined from the force F(r) between static quarks

 $r^{2} F(r)\Big|_{r=r_{0}} = 1.65$ where F(r) = V'(r)

 potential V(r) between a static (infinitely massive) quark and anti-quark pair separated by distance r

• determined from Wilson loops $\langle W(r, T) \rangle$

Sommer scale : r_0

- signal : falls exponentially with the area of the loop (eventually the string breaks) variance : ~ constant
- as r increases : exponential decrease of signal-to-noise ratio
- ► smearing:
 - time : modification of the static action
 - space : basis of operators ~ variational analysis

smoothing of gauge fields

smoothing or smearing : reduce the short-distance roughness of gauge fields

- HYP smearing
- iterations

stout smearing

[Morningstar & Peardon, hep-lat/0311018]

 $U'_{\mu}(x) = e^{i Q_{\mu}(x,\rho)} U_{\mu}(x)$

- $Q_{\mu}(x, \rho)$ built from staples traceless, Hermitian
- differentiable → HMC

[Hasenfratz & Knechtli, hep-lat/0103029]

r_0 : properties

- does not require extrapolations in r
- O(a) improved (for improved sea quarks)
- ▶ r_0/a can be calculated with good statistical precision [~ 1%]
- no direct connection of r_0 with experiment, only with phenomenological potential models $\rightarrow r_0 \approx 0.5 \,\text{fm}$
- How is r_0/a computed?
- (i) determine the static potential at some distance r/a
- (ii) compute the force
- (iii) interpolate in r
- ▶ note on the string tension : requires extrapolation in *r* and ill-defined in unquenched QCD

static potential : $N_{\rm f} = 2$

- Estat: binding energy of the static-light meson
- it is expected that the first excited state is related to a meson-anti-meson state : $V_1 \approx 2E_{\text{stat}}$
- ... would require the use of suitable operators

W-flow M_{k}^{re}

static potential : $N_{\rm f} = 2$

[ALPHA, 1112.1246]

$$r^{2} F(r)\Big|_{r=r_{0}} = 1.65$$

 $r^{2} F(r)\Big|_{r=r_{1}} = 1.0$

where F(r) = V'(r)

 $r_1/r_0 \sim 0.65$

[C. Bernard et al., hep-lat/0002028]

DESY Zeuthen, 11-10-12

Intro ρ f_{π}, f_{K} M_{Ω}, M_{N} comparison conclusions r_{0} W-flow

 $r_0/a: N_f = 2$

- light quark mass dependence
- discretisation effects in mass-dependence

DESY Zeuthen, 11-10-12

r_0/a : quenched

[S. Necco & R. Sommer, hep-lat/0108008]

Wilson flow

[M. Lüscher, 1006.4518]

• flow $B_{\mu}(t,x)$, for t > 0 and $B_{\mu}(0,x) = A_{\mu}(x)$

• flow equation :
$$\partial_t B_\mu = D_\nu G_{\nu\mu}$$

$$G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}]$$

- the flow smooths the gauge field : range $\sqrt{8t}$
- infinitesimal stout-smearing steps
- on the lattice : $V_t(x,\mu)$ with $V_0(x,\mu) = U(x,\mu)$
 - $\partial_t V_t(x,\mu) = -g_0^2 \{\partial_{x,\mu} S_{\mathbf{w}}(V_t)\} V_t(x,\mu)$
 - observables : $E(t) = \frac{1}{2}G^a_{\nu\mu}G^a_{\nu\mu}$
 - $\langle E(t) \rangle$ does not need renormalisation

Wilson flow : t_0

pure gauge , $a = 0.05 \, \mathrm{fm}$

[M. Lüscher, 1006.4518]

simple and precise

$$t^2 \langle E(t) \rangle \Big|_{t=t_0} = 0.3$$

DESY Zeuthen, 11-10-12

Wilson flow : t_0

[M. Lüscher, 1006.4518]

$$t^2 \langle E(t) \rangle \Big|_{t=t_0} = 0.3$$

 $(a/r_0)^2$

recent proposal :

 $t\frac{\mathrm{d}}{\mathrm{d}t}\left[t^{2}\langle E(t)\rangle\right]\Big|_{t=w_{0}^{2}}=0.3$

DESY Zeuthen, 11-10-12

G. Herdoíza

scale setting in lattice QCD

[BMW, 1203.4469]

W-flow Mref

W₀

continuum limit scaling

$$N_{\rm f} = 2 + 1$$

[BMW, 1203.4469]

$$t\frac{\mathrm{d}}{\mathrm{d}t}\left[t^2\langle E(t)\rangle\right]\Big|_{t=w_0^2}=0.3$$

 $w_0 = 0.1715(18)(04) \, \text{fm}$ [1%]

scale from M_{Ω} : largest contribution to the error of w_0

Intro ρ f_{π}, f_{K} M_{Ω}, M_{N} comparison conclusions

 w_0 away from the physical point

 $N_{\rm f} = 2 + 1$

[BMW, 1203.4469]

Wilson flow observables : autocorrelation

 $\tau_{\rm int}(\left< E \right>)$

pure gauge, open BC, a = 0.05 fm, L/a=32,

[M. Lüscher & S. Schaefer, 1105.4749]

Intro ρ f_{π}, f_{K} M_{Ω}, M_{N} comparison conclusions

ro W-flow Mref

reference scale with meson masses

define a reference scale within the available data range : $ho = M_{
m K}^{
m ref}$

- (i) $M_K/M_{K^*} = (M_K/M_{K^*})^{\exp} = 0.554$ $N_f = 2 \text{ [CERN, hep-lat/0610059]}$ $\rightarrow m_s$ at a given m_ℓ
- observation:

in this point, aM_K does not significantly depend in m_ℓ (in particular for small m_ℓ)

(ii) pick m_ℓ such that

 $(M_{\pi}/M_{K})^{\rm ref} = 0.85$ $(M_{\pi}/M_{K})^{\rm exp} \approx 0.28$ $\Rightarrow a\rho = aM_{K}^{\rm ref}$

- why $M_{\pi}/M_{K} = 0.85?$
 - long extrapolation to $(M_{K^*}/M_K)^{exp}$
 - K* is a resonance :

the extrapolation would have to go through the kinematical threshold

quenched era

- in the quenched case : $r_0 = 0.5 \,\text{fm}, \rho$ -meson, ϕ, f_K, M_N, \dots
- ▶ $\sim 10\%$ ambiguity between setting the scale with f_K and M_N

[ALPHA-UKQCD, hep-lat/9906013]

[[]BGR, hep-lat/0307013]

scale setting : pseudoscalar meson decay constants

 f_{π} , f_{K}

Intro $\rho f_{\pi}, f_{k}$ M_{Ω}, M_{N} comparison conclusions f_{π} f

scale setting with f_{π} , f_{K}

- pseudoscalar mesons :
 - do not decay in QCD
 - signal/noise ratio
 - $am_q \ll 1$
 - excited state contamination
- ► light-quark mass dependence :
 - guidance from chiral perturbation theory (χ PT) where applicable
 - f_K milder log effects than in f_π
 - comparison of χPT and polynomial fits
- finite volume effects : χ PT
- f_K : requires m_s
- renormalisation
- experimental situation

pseudoscalar meson decay constants : f_{PS}

 $f_{\pi}p_{\mu} = \langle 0 | \, \bar{u} \gamma_{\mu} \gamma_{5} d \, | \, \pi(p) \rangle$

decay width of charged pseudoscalar meson P into leptons $\rightsquigarrow f_{PS}$

$$\Gamma(P \to \ell \nu) = \frac{G_F^2}{8\pi} f_{\rm PS}^2 m_{\ell}^2 M_{\rm PS} \left(1 - \frac{m_{\ell}^2}{M_{\rm PS}^2} \right) |V_{q_1 q_2}|$$

 f_{π} : experimental input

$$\Gamma(P \to \ell \nu) = \frac{G_F^2}{8\pi} f_{\rm PS}^2 m_\ell^2 M_{\rm PS} \left(1 - \frac{m_\ell^2}{M_{\rm PS}^2}\right) |V_{q_1 q_2}|$$

•
$$\pi^-$$
: $(\bar{u}d)$; $|V_{ud}|$; $\pi^- \to \mu^- + \bar{\nu}(\gamma)$
 $f_{\pi^-} = (130.4 \pm 0.2) \,\text{MeV} \ [0.2\%]$ [PDG, 2012]

note:
$$f_{\pi^-} = (130.7 \pm 0.4) \,\text{MeV}$$
 [0.3%] [PDG, 2007]

- π^0 : $(\bar{u}u + \bar{d}d)$; $\pi^0 \to \gamma\gamma$ \rightsquigarrow $f_{\pi^0}^{\exp}$ [4%]
- $M_{\pi^{\pm}} = 139.6 \,\text{MeV};$ $M_{\pi^{0}} = 135.0 \,\text{MeV};$ $M_{\pi^{\pm}} M_{\pi^{0}} = 4.6 \,\text{MeV}$ (i.e ~ 3%) $m_{u} = m_{d} \,$ & w/out QED: $M_{\pi} = 134.8(3) \,\text{MeV}$ [FLAG, 1011.4408]
- $m_u \neq m_d$: $(f_{\pi\pm} f_{\pi^0})/f_{\pi^0} \propto (m_d m_u)^2 \sim 10^{-4}$ i.e. small idem for QED (not unique way to split QED and QCD)

[Gasser & Zarnauskas, 1008.3479]

• PDG uses
$$M_{\pi^0} \rightsquigarrow \delta f_{\pi^-} = +0.4 \, {\rm MeV}$$

Intro $\rho f_{\pi}, f_{K} M_{\Omega}, M_{N}$ comparison conclusions f_{π}

$N_{\rm f}=2$ & 2+1+1 ETMC ensembles

Wilson twisted mass

[ALPHA, Frezzotti et al., 2001; Frezzotti & Rossi, 2003]

- tlSym gauge action $[N_{\rm f}=2]$
- Iwasaki gauge action $[N_f = 2 + 1 + 1]$

 $N_{\rm f} = 2 + 1 + 1$

- a = {0.06, 0.08, 0.09} fm
- $L = \{1.9, 2.7\} \text{ fm}$, $M_{\rm PS}L \gtrsim 3.5$
- $m_{\pi} \in \{200, 520\}$ MeV
- HMC + PHMC
- 5000 thermalised traj. , au=1

 $N_{\rm f}=2$

- $\sigma = \{0.06, 0.07, 0.08, 0.10\}$ fm
- scale setting :

(i)
$$(f_{\pi}r_0)^{\text{phys,latt}} = f_{\pi}^{\text{exp}} \times r_0^{\text{phys}}$$

(ii)
$$a = \frac{r_0^{\text{phys}}}{\left(\frac{r_0}{a}[\beta]\right)^{\text{phys}}}$$

• *M_N* is also used [ETMC, 0910.2419, 1012.3861]

DESY Zeuthen, 11-10-12

200 300 400

 $m_{\rm PS}$ [MeV]

100

500 600

 f_{π} : discretisation effects

pion decay constant

$$f_{\mathrm{PS}} = rac{2\mu_\ell}{M_{\mathrm{PS}}^2} |\langle 0| P^1(0)|\pi^\pm
angle|$$

chiral perturbation theory (χ PT) m_{π}, f_{π}

SU(2) χPT

$$M_{\rm PS}^2(L) = 2\widehat{B}_0\mu_R \left[1 + \xi \ln(\chi_\mu/\Lambda_3^2) + \overline{I}_m^{\rm NNLO} + \sigma^2 D_m\right] \cdot \left(K_m^{\rm CDH}(L)\right)^2$$

$$f_{\text{PS}}(L) = f_0 \left[1 - 2\xi \ln(\chi_{\mu}/\Lambda_4^2) + T_f^{\text{NNLO}} + \sigma^2 D_f \right] \cdot K_f^{\text{CDH}}(L)$$

where
$$\chi_{\mu} = 2\widehat{B}_{0}\mu_{R}$$
, $\mu_{R} = 1/Z_{P}\mu_{\ell}$, $\xi = \chi_{\mu}/(4\pi f_{0})^{2}$

- derived quantities : $m_{u,d}$, $\langle \bar{q}q \rangle$, low-energy constants : $\bar{b}_{3,4} \equiv \log(\Lambda_{3,4}^2/M_{\pi^{\pm}}^2)$
- Finite size corrections
 [Colangelo et al. (CDH), 2005]
 mass dependence
 NLO and NNLO (extra parameters: r₀Λ_{1,2}, k_M, k_F)
- include $O(a^2)$ terms in the fits

 $f_{\pi} f_{K}$

 f_{π} : χ PT $N_{\rm f}=2$

SU(2) χ PT at NLO including O(a^2) terms

[ETMC, 0911.5061]

|--|

$$N_{\rm f}=2$$

$\left(f_{\pi}r_{0}\right)^{\rm phys, latt} = t$	$r_{\pi}^{\exp} \times r_{0}^{\mathrm{phys}}$	$a = \frac{r_0^{\rm phys}}{\left(\frac{f_0}{a}[\beta]\right)^{\rm phys}}$	$f_{\pi}^{\exp} = 130.7 \mathrm{MeV}$	
	$\beta = 3.8, 3.9, 4.05$	$\beta = 3.9, 4.05$	$\beta = 3.9, 4.05, 4.2$	
70 [fm]	0.446(9)	0.420(14)	0.429(8)	
$a(\beta = 3.90)$ [fm]	0.0847(15)	0.0790(26)	0.0801(14)	
$\alpha(\beta = 4.05) [\text{fm}]$	0.0672(12)	0.0630(20)	0.0638(10)	
$ \Sigma ^{1/3}$ [MeV]	262.2(4.0)	269.9(6.5)	268.4(6.6)	
ℓ ₃	3.32(21)	3.50(31)	3.49(9)	
$\bar{\ell}_4$	4.69(17)	4.66(33)	4.63(4)	
f_{π}/f_0	1.0742(81)	1.0755(94)	1.0750(8)	
m _{u,d} [MeV]	3.84(18)	3.54(26)	3.58(26)	

 $|\Sigma|^{1/3}$ and $m_{u,d}$ are given in $\overline{\mathrm{MS}}$ at 2 GeV

[ETMC, 0911.5061]

note : latest $N_{\rm f} = 2$ analysis [ETMC, 1010.3659]

- four values of a , updated determinations of $Z_{\rm P}$
- fits to tmWχPT [Colangelo et al., 1003.0847] & [0. Bär, 1008.0784]

 $r_0^{\rm phys} = 0.450(15) \, {\rm fm} \, [3.3\%]$

 $m_{u,d} = 3.6(2) \, \text{MeV}$

syste

f_k

$$K^{-}: (\bar{s}d); \qquad |V_{us}|; \qquad K^{-} \rightarrow \mu^{-} + \bar{\nu}(\gamma)$$

unitarity of the CKM matrix: first row

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + O\left(\frac{M_W^2}{\Lambda_{NP}^2}\right)$$

Relative contributions

- $|V_{ud}| \approx 0.974$: rel. error $\delta \sim 0.02\%$
- $|V_{us}| \approx 0.225$: $\delta \sim 0.50\% \div 1\%$ $K_{\ell 3}$ and $K_{\ell 2}$ decays; $\tau \rightarrow$ hadrons

nuclear β decays

• $|V_{ub}| \approx 0.004$: small

f_K

$$K^{-}: (\bar{s}d); \qquad |V_{us}|; \qquad K^{-} \rightarrow \mu^{-} + \bar{\nu}(\gamma)$$

unitarity of the CKM matrix: first row

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + O\left(\frac{M_W^2}{\Lambda_{NP}^2}\right)$$

Relative contributions

- $|V_{ud}| \approx 0.974$: rel. error $\delta \sim 0.02\%$
- $|V_{\rm LS}| \approx 0.225$: $\delta \sim 0.50\% \div 1\%$ $K_{\ell 3}$ and $K_{\ell 2}$ decays; $\tau \rightarrow$ hadrons
- nuclear β decays

• $|V_{ub}| \approx 0.004$: small

Determinations of $|V_{us}|$

• semileptonic $K_{\ell 3}$ decays: $K \to \pi \ell \nu$

$$\Gamma(K_{\ell 3(\gamma)}) \propto |V_{us}|^2 f_+(0)^2$$

• $\delta(|V_{us}|f_+(0)) \sim 0.20\%$

f_K

$$K^{-}: (\bar{s}d); \qquad |V_{us}|; \qquad K^{-} \rightarrow \mu^{-} + \bar{\nu}(\gamma)$$

unitarity of the CKM matrix: first row

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + O\left(\frac{M_W^2}{\Lambda_{NP}^2}\right)$$

Relative contributions

- $|V_{ud}| \approx 0.974$: rel. error $\delta \sim 0.02\%$
- $|V_{us}| \approx 0.225$: $\delta \sim 0.50\% \div 1\%$

nuclear β decays

 $K_{\ell 3}$ and $K_{\ell 2}$ decays; au
ightarrow hadrons

• $|V_{ub}| \approx 0.004$: small

Determinations of $|V_{us}|$

• semileptonic $K_{\ell 3}$ decays: $K \to \pi \ell \nu$

$$\Gamma(K_{\ell \Im(\gamma)}) \propto |V_{us}|^2 f_+(0)^2$$

- $\delta(|V_{us}|f_+(0)) \sim 0.20\%$
- ► leptonic $K_{\ell 2}$ decays: $K \to \ell \nu$

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} \propto \left|\frac{V_{us}}{V_{ud}}\right|^2 \left(\frac{f_{K}}{f_{\pi}}\right)^2$$

• $\delta(V_{us}/V_{ud} \times f_K/f_\pi) \sim 0.20\%$

$f_{\mathcal{K}}$: experimental input

f _K [MeV]	method
156.1 ± 0.9 [0.5%]	${\it K}^- ightarrow \mu^- ar{ u} \left(\gamma ight)$ & ${\it f}_+(0)$ from lattice [PDG]
155.6	lattice $N_{\rm f}=2+1$
157.8	lattice $N_{\rm f}=2$
155.5	lattice $N_{\rm f}=2+1$ + unitarity
155.7	lattice $N_{\rm f}=2$ + unitarity
158.7	$ V_{\scriptscriptstyle US} $ from $ au$ decays

 f_{K}

note : this is not a thorough comparison of f_K

[FLAG, 1011.4408] : does not quote f_K , only f_K/f_π ; warnings about au decays $f_\pi^{exp} = 130.4 \pm 0.2$ [0.2%]

 f_{K} : isospin breaking

$$\left[\frac{F_{K^0}-F_{K^+}}{F_K}\right]^{QCD}=0.0078(8)$$

Intro $\rho f_{\pi}, f_{K} = M_{\Omega}, M_{N}$ comparison conclusions f_{π}

$N_{\rm f}=2$ ALPHA

 Wilson fermions : O(a) improved with non-perturbative c_{SW}

• Wilson plaquette gauge action

- N_f = 2
- $a = \{0.08, 0.07, 0.05\}$ fm
- $L = \{2.1, 3.2\} \text{ fm}$, $M_{PS}L > 4$
- $m_{\pi} \in \{270, 630\}$ MeV
- DD-HMC and MP-HMC
- effective statistics : $1200 \div 2 \times 6000$ thermalised traj., $\tau = 1$
- scale setting:

$$a = \frac{(af_{\kappa}[\beta])^{\text{phys,latt}}}{f_{\kappa}^{\text{exp}}}$$

M_Ω is also used [ALPHA, 1110.6365]

DESY Zeuthen, 11-10-12

[CLS: ALPHA, 1205,5380]

[ALPHA, 1205.5380]

physical input

 f_K

$$m_{\pi,\text{phys}} = 134.8 \text{ MeV}, \qquad m_{K,\text{phys}} = 494.2 \text{ MeV}, \qquad f_{K,\text{phys}} = 155 \text{ MeV}$$

subtracted isospin breaking effects [FLAG, 1011.4408]

$$R_{\rm K} = rac{m_{
m K}^2}{f_{
m K}^2} \,, \qquad \qquad R_{\pi} = rac{m_{\pi}^2}{f_{
m K}^2}$$

► reaching the physical point
(i)
$$R_{\rm K}(\kappa_1, \kappa_3) = R_{\rm K}^{\rm phys} = {\rm const}$$

see also (gcdsf-ukgcd, 1102.5300)
(ii) $M_{\rm s} = M_{\rm S}^{\rm phys} = {\rm const}$
 $N_{\rm f} = 2$: partial quenching ; $Z_{\rm A}$

Intro ho f_{π}, f_{K} M_{Ω}, M_{N} comparison conclusions f_{π}

$$f_{\mathcal{K}} = \frac{m_{\mathcal{K}}^{2}}{f_{\mathcal{K}}^{2}}, \qquad R_{\pi} = \frac{m_{\pi}^{2}}{f_{\mathcal{K}}^{2}}$$

$$g_{1} = \frac{m_{\pi}^{2}(\kappa_{1})}{8\pi^{2}f_{\mathcal{K}}^{2}(\kappa_{1},h(\kappa_{1}))} = \frac{1}{8\pi^{2}}R_{\pi}(\kappa_{1})$$

$$y_{\pi} = \frac{m_{\pi,\text{phys}}^{2}}{8\pi^{2}f_{\mathcal{K},\text{phys}}^{2}} = 0.00958, \qquad y_{\mathcal{K}} = \frac{m_{\mathcal{K},\text{phys}}^{2}}{8\pi^{2}f_{\mathcal{K},\text{phys}}^{2}} = 0.12875$$

$$\int_{0.25}^{0.25} \int_{0.4}^{0} \int_{0.4}^{0} \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{3}=h(\kappa_{1}))} = R_{\mathcal{K}}^{2} + \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{3}=h(\kappa_{1}))} = \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{3}=h(\kappa_{1}))} = \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{3}=h(\kappa_{1})}) = \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{3}=h(\kappa_{1}))} = \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{3}=h(\kappa_{1}))} = \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{3}=h(\kappa_{1}))} = \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{3}=h(\kappa_{1}))} = \frac{1}{R_{\mathcal{K}}^{2}(\kappa_{1},\kappa_{1})} = \frac{1}{R_{\mathcal$$

DESY Zeuthen, 11-10-12

$f_{\mathcal{K}}$: autocorrelations

• $a \approx 0.05$ fm, $M_{\pi} \approx 270$ MeV, $M_{\pi}L = 4.2$, 4000 MD units

including the tail : factor of two increase in the error

f_K : cutoff effects

open symbols: r_0 / a at finite mass filled symbols: r_0 / a at the chiral limit

[ALPHA, 1205.5380]

$$y_1 = \frac{m_\pi^2(\kappa_1)}{8\pi^2 f_{\rm K}^2(\kappa_1, h(\kappa_1))}$$

 $r_0 = 0.503(10) \, \text{fm} [2.0\%]$

• $(r_0 f_K)^{\text{phys}} = 0.3951(62) [1.6\%]$

• note : r_0 is not used in the scale setting

DESY Zeuthen, 11-10-12

f_K : scale setting

open symbols: strategy (i) filled symbols:

DESY Zeuthen, 11-

strategy (ii)

 $F_K = af_K$ $\beta = 5.5$ [ALPHA, 1205.5380]

$$a = rac{(af_{\mathcal{K}})^{\mathrm{phys,latt}}}{f_{\mathcal{K}}^{\mathrm{exp}}}$$

$$f_{K}^{\exp} = 155 \,\mathrm{MeV}$$

-	β	$(af_{\nu})^{\text{phys}}$	latt	0	r [fm]			
Ę	5.2	0.0593(7)	(6)	0.0755(9	(7)(7)	[1.5%]		
Į	5.3	0.0517(6)	(6)	0.0658(7	')(7)	[1.5%]		
Ę	5.5	0.0382(4)	(3)	0.0486(4	4)(5)	[1.3%]		
note : another possibility	y (r ₀ f _K) ^{latt,phys}	~~>	$r_0^{\rm phys}$	$\sim \rightarrow$	а	by using	$[r_0/a](\beta)$
DESV Zeuthen 11 10 12		G Hor	loíza	socia sottin				

Intro ρ f_{π}, f_{K} M_{Ω}, M_{N} comparison conclusions f_{π}

scale setting with $f_K \rightsquigarrow m_s$

strange quark mass :

 f_{K}

 $F_K = af_K$

[ALPHA, 1205.5380]

RGI mass : $M_s = 138(3)(1) \text{ MeV}$

 $\overline{\text{MS}}$ mass : $m_s[\overline{\text{MS}}, 2\text{GeV}] = 102(3)(1) \text{ MeV}$

Intro ρ f_{\pi}, f_K M_{Ω} , M_{N} comparison conclusions

BMW

scale setting : baryon masses

M_{Ω}, M_{Ξ}, M_N

Intro ρ f_{π}, f_{K} M_{Ω}, M_{N} comparison conclusions B

scale setting with M_{Ω} , M_{Ξ} , M_N

• M_{Ω} , M_{Ξ} , M_N baryons :

- do not decay in QCD
- signal/noise ratio : exponential decrease with t
- excited state contamination
- octet/decuplet : variance
- $am_q \ll 1$
- ► light-quark mass dependence :
 - convergence of baryon χPT
 - $M_{\Omega}(sss)$ milder dependence than M_N
- M_Ω : requires m_s
- well known experimentally

Intro ρ f_{π}, f_K M_{Ω} , M_{N} comparison conclusions BMW

$N_{\rm f}=2+1~$ BMW ensembles

- Wilson fermions with tree-level c_{SW}
 6-stout [BMW, 0906.3599]
 2-HEX [BMW, 1011.2711]
- tlSym gauge action

6-stout

- a = {0.065, 0, 085, 0.125} fm
- $M_{\pi} \in \{190, 580\}$ MeV
- HMC + RHMC
- 1000 ÷ 10000 thermalised traj.
- scale setting :

$$a = \frac{(aM_{\Omega}[\beta])^{\text{phys,latt}}}{M_{\Omega}^{\text{exp}}}$$

• $M_{\Xi}(S = -2, \text{ octet})$ is also used

(HEX) BMW

(stout) BMW

effective masses

6-stout, $M_\pi pprox$ 190 MeV, a pprox 0.085 fm

[BMW, 0906.3599]

ratio plot

6-stout, $(2M_{\kappa}^2 - M_{\pi}^2)^{\rm phys}$

analysis in terms in ratios

DESY Zeuthen, 11-10-12

[BMW, 0906.3599]

scale setting : M_{Ω} and M_{Ξ}

X	Exp.	M_X [Ξ]	$M_X [\Omega]$
Ω	1.672	1.676(20)(15)	1.672
Ξ	1.318	1.318	1.317(16)(13)
ρ	0.775	0.775(29)(13)	0.778(30)(33)
Ν	0.939	0.936(25)(22)	0.953(29)(19)
Δ	1.232	1.248(97)(61)	1.234(82)(81)

6-stout

[BMW, 0906.3599]

σ -terms

Feynman-Hellman theorem

$$\sigma_{\pi N} \approx M_{\pi}^2 \frac{\partial M_N}{\partial M_{\pi}^2}$$

$$\sigma_{\pi N} = 39(4) \begin{pmatrix} +18 \\ -7 \end{pmatrix} \text{MeV} [35\%]$$

[BMW, 1109.4265]

m_{ud} : systematics

cut	m _{ud}	$\sigma_{\rm stat}$	$\sigma_{\rm syst}$	plateau	scale	fit form	mass cut	renorm.	cont.
120 MeV	3.503	0.048	0.049	0.330	0.034	0.030	0.157	0.080	0.926
200 MeV	3.523	0.057	0.063	0.354	0.078	0.470	0.236	0.087	0.765
240 MeV	3.484	0.079	0.131	0.316	0.092	0.807	0.341	0.046	0.349

2-HEX : scale from M_{Ω}

[BMW, 1011.2711]

masses in MeV, RI/MOM at $\mu = 4 \,\text{GeV}$

SOUICE: [H. Wittig, lat11, 1201.4774]

dynamical simulations : parameter landscape

caveat in plots: no information on systematic effects (cut-off effects, FSE, scale setting, ...), m_s, m_c, ...

ratio plots

 $N_{\rm f}=2+1+1$ and comparison to $N_{\rm f}=2$

a = 0.08, 0.09 fm

[ETMC, 1004.5284]

scale from M_{Ω}

 f_{π}

[RBC-UKQCD, 1201.0706]

 f_K/f_π

light-quark mass dependence

SU(3) breaking

DESY Zeuthen, 11-10-12

[H. Wittig, lat11, 1201.4774]

 f_K/f_π

DESY Zeuthen, 11-10-12

$$\overline{m}^{\rm R} = \frac{1}{3}(m_u^{\rm R} + m_d^{\rm R} + m_s^{\rm R})$$

 $X_{\pi}^2 = \frac{1}{3}(2M_{K}^2 + M_{\pi}^2)$

$$X_N = \frac{1}{3}(M_N + M_{\Sigma} + M_{\Xi})$$

 $X_{\Delta} = \frac{1}{3}(2M_{\Delta} + M_{\Omega})$

 $\beta = 5.5$, L/a = 32

[UKQCD-QCDSF, 1102.5300]
r_1 : HPQCD

$$N_{\rm f} = 2 + 1$$

[HPQCD, 0910.1229]

red (top) symbols: $M_{D_S} - M_{\eta_C}/2$ blue (middle) symbols: f_{η_S} green (bottom) symbols: $M_{\Upsilon'} - M_{\Upsilon}$

 $r_1^{\rm phys} = 0.313(2) \, {\rm fm} \quad [0.7\%]$

r_0 : comparison

group	N _f	<i>r</i> ₀ [fm]	scale	# a	ref.
ETMC	2	0.454(07)	f_{π}	1	hep-lat/0701012
		0.420(14)		2	0911.5061
		0.450(15)		4	1010.3659
		0.473(09)	M _N	2	0803.3190
		0.465(15)		2	0910.2419
ALPHA		0.503(10)	f _K	3	1205.5380
		0.471(17)	M _Ω	3	1110.6365
PACS-CS	2+1	0.492(10)	M _Ω	1	0807.1661
Budapest-Wuppertal		0.480(14)	f _K	5	0903.4155
HPQCD		0.466(04)	$M_{D_s} - M_{\eta_c}/2, f_{\eta_s}, M_{\Upsilon'} - M_{\Upsilon}$	4	0910.1229
RBC-UKQCD		0.487(09)	M _Ω	2	1011.0892
ETMC	2+1+1	0.447(05)	f_{π}	1	1004.5284

 $r_0 \in [0.45, 0.50] \, {
m fm} \, \rightsquigarrow \, \sim 10\% \, {
m rel.} \, {
m variation}$

r_0 : comparison

r_1 : comparison

group	N _f	r_1 [fm]	scale	# a	ref.
MILC	2+1	0.311(08)	f_{π}	5	0903.3598
HPQCD		0.321(05)	$M_{\Upsilon'} - M_{\Upsilon}$	3	0706.1726
		0.313(02)	$M_{D_s} - M_{\eta_c}/2, f_{\eta_s}, M_{\Upsilon'} - M_{\Upsilon}$	4	0910.1229
Fermilab-MILC		0.312(02)	f_{π} + av.	-	1112.3051
RBC-UKQCD		0.333(09)	MΩ	2	1011.0892
HPQCD	2+1+1	0.321(03)	$f_{\eta_s}, M_{\Upsilon'} - M_{\Upsilon}$	3	1110.6887

 $r_1 \in [0.31, 0.33] \, \mathrm{fm} \ \rightsquigarrow \ \sim \ 7\%$ rel. variation

conclusions

scale setting

- can introduce large uncertainties in all dimensionful observables
- careful choice of the observable and of the procedure to reach the physical point
- cross-checks: vary ρ and S in different sectors
- ▶ worth the effort ~→ check of universality