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Introduction

Basic task

@ Goal of phenomenological lattice QCD:
e Compute expectation values of physical observables
(masses, matrix elements,...)
o Get reliable total errors of physical predictions
e Use a minimum amount of computer time to obtain them

e provide results with reliable total erros
e show how to efficiently improve the results

all
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Introduction

Errors

Errors fall into 2 broad categories:

o

e Origin: stochastic evaluation of the path integral

e Can be treated by standard methods (e.g. bootstrap)
o

e Origin: our lack of knowledge

e Can not be computed, only estimated

Keep good balance between the two!

o
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Introduction

What we will practice

In this course, we will:
@ Generate fake propagators

e Everyone deals with a separate set
e We know the solution

@ Extract ground state mass (exercise 1)

@ Extra/interpolate an observable to the “physical point”
(exercise 2)
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Autocorrelation

Autocorrelation

Lattice data are typically Markov chains:
@ Each ensemble is based on the previous one
@ Need independent ensembles in equilibrium distribution

@ Thermalization
e Affects only beginning
e Cut initial configs 05/ g
0.4 N
08— 20 30 ~ 40 50

MC time

Data analysis
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Autocorrelation

Autocorrelation

Lattice data are typically Markov chains:
@ Each ensemble is based on the previous one

@ Need independent ensembles in equilibrium distribution

0.596

<Tr(U )>

@ Autocorrelation
o Reduces number of
independent configs
e Different per observable 0:09%

1000

| n | n | n |
600 700 800 900
MC time

Data analysis
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Autocorrelation

Autocorrelation - definitions

Given a time series ay, the autocorrelation is the correlation of
the time series with itself at a

((ar — (ar) )
(ar)

R(T) =

In a stationary random process
R(T)~e /"

with the autocorrelation time 7
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Autocorrelation

Autocorrelation - effects

We usually compute the

N
=Y R(T)~ e T =7
T=1

Autocorrelation reduces the effective number of measurements

Minimize autocorrelation: the data

4 B-1
=B Za +b
b=0
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Autocorrelation

Autocorrelation - effects

We usually compute the
N
=Y R(T)~ e T =7
T—=1
Autocorrelation reduces the effective number of measurements

2
o2 z"ﬁ(uz )

a)
Minimize autocorrelation: the data

4 B-1
=B Za +b
b=0
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Autocorrelation

B, L24T48, = 5.6,k = 0.15825

) B, L24T48, = 5.6, k = 0.15825
05 I'. osp
= I'l =
= Lo = !
- 0 il“"... K ([T iIIIII||||||||ii||||||’||ii.’..(I 0 ‘|“|‘|"|‘|"|||||||||||||||||||||||III|||||||||||...‘||....||I|||||||IIII||||||||IIII|||||||||||||||i|||||||||||||||||llh..
LM il
03 25 45 ||| 60 sb 160 lﬁo 1“10 03 2‘0 4‘0 &) 185 160 1&0 14‘&0
} B,,: L24T48,p = 5.6,k =0.15825
Difficult to compute accurately osh o ‘,
@ Time series long enough TR

@ Observable dependent
@ Global observables slower
Example: plaguette in DDHMC

04
(Chowdhury et. al (2012))
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Autocorrelation

Autocorrelation - packages

There is a standard package you can feed your time series to:
U. Wolff, Monte Carlo errors with less errors,
Comput.Phys.Commun. 156:143-153,2004;
Erratum-ibid.176:383,2007

hep-lat/0306017

MATLAB code can be found at:
http://www.physik.hu-berlin.de/com/ALPHAsoft/
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Autocorrelation
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Correlator fits

Ground state extraction

= Euclidean correlation
function

¢t = (0|OT(1)©(0)|0)

winsert 1 = |/) (/| a |
S (ot ot(0)e i) (i 0(0)[0)

j
wEigenbasis |/) of H

Z|owo i) [Pe(FmFot ‘

Forz‘%x.
=4

=
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Correlator fits

Signals from propagators

@ Ground state coupling may be small
@ Signal decays exponentially, noise not always

@ There are backward (periodic BC) or border (open/fixed
BC) contributions

<P(t)P(0)>

7 7! "’T 1*“ 7
12 ‘ U‘ ‘
7l i
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Correlator fits

Signals from propagators

@ Ground state coupling may be small

@ Signal decays exponentially, noise not always

@ There are backward (periodic BC) or border (open/fixed
BC) contributions

E .’ 9‘ El é w ! E
: H Pr WUH WH ! 1

Ll il Ll Ll
0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
ta
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Correlator fits

Excited state dominance

Small coupling of ground state is not an academic problem
@ Occurs especially in resonant channels
@ Ground state needs virtual ggq production

@ Different operators couple very differently
Finite volume energy levels Spectral density

L
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Correlator fits

Propagator forms

Single state, propagating forward:

ci(t) = e ™

Include contributions warping around the lattice (tiny):
cr(t)= c? (e*’"’+e*m(”f) + .. )
_ C;)e—mt>< Z efan
n=0

1

_ A0 —mt
=Ce it
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Correlator fits

Propagator forms

For T (P) symmetric (c® = ¢? = c))

resp. antisymmetric (c® = ¢ = —c):
0
_ Y —mt +
Ct_1—e*’”7<e - )
;
O cosh (m (5 —t))
Tioem? T

sinh (m (% — 1))

Effective mass M, , 1 from numerical solution of:

t+3
Ot _ cosh (MH% (Z-t- 1))
Ct cosh <Mt+% = t))

Christian Hoelbling (Wuppertal) Data analysis



Correlator fits

Propagator forms

For T (P) symmetric (c® = ¢? = c))

resp. antisymmetric (c® = ¢ = —c):
0
_ Y —mt +
Ct_1—e*’”7<e - )
;
O cosh (m (5 —t))
Tioem? T

sinh (m (% — 1))

Effective mass M, , 1 from numerical solution of:

t+3
Gy _ SN (Mg (F-1-1)
Ct sinh <Mt+% (£ - t))
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Correlator fits

Mass plateaus

0.25

0.2

t
i
...nnl”“”

0.15

t
lu,o.'q“.o.m......'HI }lm,......o

Analytical 3-point expression (we will use this):

Ct+1 + Ct—1
M. + = acosh—————
H‘% 2¢;
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Correlator fits

Mass fit

After identifying plateau range, we fit the propagators with

c0

S

(et or07-0)

where m and ¢ are fit parameters
Maximum likelihood fit assuming normal error distribution:

X2 = (c—p)s(Xst(c — p)t — min
Data points ¢, fit function p and covariance matrix &

Lst = ((¢s — {cs))(ct — (cr))

Usual variance in diagonal elements ¥4 = o(c¢;)?

Christian Hoelbling (Wuppertal) Data analysis



Correlator fits

Fit results

From a fit we in principle get 3 things:
v' The most likely value of the fit parameters
e Values of the parameters at x> — min
v Standard errors of the parameters
(more generally, confidence regions)
e Contours of constant Ay? = x? — 2.
v' The quality of the fit
2 oo 12 e lgt
g% _ %
1) [ 2 e tat
@ Q: probability that - given the model - the data are at least
as far off the prediction as the real data

= Q should be a flat random value € [0, 1]

e From Q =

—~

NI S|
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Correlator fits

Correlations

For uncorrelated data, ¥ is diagonal

Y gt

Cot = S ea)o(e)

Typical (estimated) normalized covariance C for a correlator:

1.0000 0.9963 0.9840 0.9746 0.9509
0.9963 1.0000 0.9912 0.9801 0.9595
0.9840 0.9912 1.0000 0.9934 0.9846
0.9746 0.9801 0.9934 1.0000 0.9912
0.9509 0.9595 0.9846 0.9912 1.0000
Eigenvalues:

4.9224 0.0661 0.0059 0.0041 0.0014

Christian Hoelbling (Wuppertal) Data analysis



Correlator fits

Problems with correlations

The structure of the covariance matrix can be problematic

°
e InC!
°

One can:

@ Do an uncorrelated fit: > diagonal
@ Truncate small eigenmodes

e Truncate them (optionally correct diagonal)
o Average them (vichael, Mo Kerrell, 1994)

> Need to be determined in some other way
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Correlator fits

<P(t)P(0)>

L

0 8 16 24 32 40 48 56 64
ta
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Bootstrap

Computing errors

When you make N measurements a;, you compute
@ the estimate of the expectation value

@ the estimated error of the expectation value

11 &
o = NN T 2@ (@)
i=1

one
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Bootstrap

Resampling

No! We can our ensemble:
@ Given N configs ¢; and the full ensemble E = {1,..., N}
@ Given an observable O(A) on an arbitrary Ensemble A

> We can produce one by drawing
with repetition N configs from E

> We actually draw Np
~ We compute O = O(E) and
The distribution of O; mimics independent measurements!

a%r\v/ (0)~ O+
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Bootstrap

Resampling
No! We can our ensemble:
@ Given N configs ¢; and the full ensemble E = {1,..., N}

@ Given an observable O(A) on an arbitrary Ensemble A

> We can produce one by drawing
with repetition N configs from E

> We actually draw Np
~ We compute O = O(E) and
The distribution of O; mimics independent measurements!

a% R~ (0)~ O +XXX
Usually better not to correct (stability)
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Bootstrap

Jackknife

Jackknife is similar to bootstrap:
> Cut the ensemble E into N, same size blocks

> Form Nj by leaving out one block
from E at a time

~ Compute O = O(E) and
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Bootstrap

Jackknife

Jackknife is similar to bootstrap:
> Cut the ensemble E into N, same size blocks

> Form Nj by leaving out one block
from E at a time

~ Compute O = O(E) and

oh~ (0~ 0+ XX XXX XX

Usually better not to correct (stability)
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Bootstrap

Using bootstrap

Some practical notes:
@ Use bootstrap if you can (more expensive though)
@ Choose Njg as large as you can

@ Do the complete analysis within the bootstrap

e This does even include averaging over different analysis
procedures for systematics etc.
@ Only exception are estimates of global ensemble properties
like e.g. (co-)variances needed for fits within the bootstrap.
> nesting bootstraps usually not necessary

@ Not necessary if O is linear: oyn = gnaive

@ You may extract more information from distribution of O;
e Confidence intervals, percentiles, etc.
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Bootstrap

Your pion masses

¥
X
e
X
+
+
X
+
L | L | L |
0.2 0.21 0.22 0.23
mJ'IZ

Christian Hoelbling (Wuppertal) Data analysis



Bootstrap

Rho propagator

JW FEEE
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Bootstrap

Rho propagator

JW FEEA
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Chiral fits

Fits with x-errors

A typical analysis situation:
@ We have collected data at different bare quark masses

® We want to make a prediction at the physical point (for
simplicity we ignore continuum and infinite volume)

@ Define the physical point (e.g. M;)
@ Extra/interpolate target observable there
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Chiral fits

fit curve

Fitting data with errors in the x-axis: data

> add each x-value as a fit parameter
best x-y point

- constrain each x-value with measurement rs
| best y-only point

Uncorrelated case:

X=X +Z — )2k

Generalization with full covariance matrix
SN
Mandatory to eliminate spurious correlations

ian Hoelbling (Wuppertal) Data analysis



Chiral fits

Correlated errors

Special case: Xx;, y; correlated, but uncorrelated with x;, y; i # j
> Appears naturally in fit of independent ensembles
> Covariance matrix reduces to block diagonal form
Contribution to x?:
—1 —1
2 2 zxx Zx Ax
532 (Bx A v Ty ) ( )
X X/( Y)():X}) zyy1 Ay
@ \? constant along an ellipse
@ Covariance X, tilts the axis

v Including x-errors can never increase \,2
v Including x-errors does not change n (d.o.f.)
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Chiral fits

Error ellipses

-
N
e
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Chiral fits

General strategy

Sometimes subsets of data points are correlated
@ 3 independent ensembles at each of 3 lattice spacings
@ A measurement of each of the 3 lattice spacings a;

°
o
X Introduces correlations between independent ensembles
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Chiral fits

General strategy

Sometimes subsets of data points are correlated
@ 3 independent ensembles at each of 3 lattice spacings
@ A measurement of each of the 3 lattice spacings a;

°
o
X Lattice spacing error not accounted for
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Chiral fits

General strategy

Sometimes subsets of data points are correlated
@ 3 independent ensembles at each of 3 lattice spacings
@ A measurement of each of the 3 lattice spacings a;

@ Introduce a fit parameter &; for each lattice spacing
@ Constrain a; with measurement
@ Fit Mz = M3, for each ensemble
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Chiral fits

Combined fit quality

When doing your continuum/chiral/infinite volume fit
@ Data points are often results of fits themselves
@ How do you compute the quality of cascaded fits?

°
All original fits worked fully correlated:

@ Sum 2 and d.o.f. of all fits >Q
Original fits not fully correlated:

@ Treat data points as input, just compute Q of final fit
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Quality

Fit quality

0 10 20 30 40 50
Degrees of freedom n (PDG, 2012)
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Quality

Which fit is better?

The following slides compare 2 fits each

All data are uncorrelated

Which fit can be trusted more?
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Quality

Which fit is better?
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Quality

Which fit is better?

1.4 + - 1.47 4
;
1.2F - 1.2F 4
0 ‘ 0.05 ‘ 01 0 ‘ 0.05 ‘ 01
Q=0.15 Q="

Never leave 0 d.o.f., you loose control over fit quality
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Quality

Which fit is better?
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Quality

Which fit is better?

Q=0.64

@ Do not try to extract too much from the data

@ The displayed data have no sensitivity towards a curvature
term. It is compatible with 0.
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Quality

Which fit is better?
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Quality

Which fit is better?

0 ‘ 0.05 0.1 0 0.05 0.1

Q = 0.31 Q=1.00

@ 1 — Q=8 x 103 >winning the lottery is more probable
than having a result this good by chance

@ Data are suspicious (unrecognized correlation)
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Quality

Which fit is better?
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Quality

Which fit is better?

0 ‘ 0.05 0.1 0 0.05 0.1

Q=054 Q =0.002

Linear modell is not sufficient for these data
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Quality

Practical hints

Some hints for numerically minimizing a complex x? function
@ Give reasonable starting values
("]
@ Build up your fit parameter by parameter

e Start with all but the most relevant parameters constrained
e Minimize the constrained fit first
e When it has converged, free one more parameter

@ Check pulls and bootstrap samples for outliers
("]

@ Always look at the fit to check it does fit the data
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Systematics

Systematics

How do we compute the systematic error?
@ We don't
@ Systematics can only be estimated
@ There is no single correct procedure

Example: systematic error of x - 0

Y
141 +2 B
Y
1.2F 1 B
L | L |
0 0.05 0.1
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Systematics

Simple estimates

1.2 T+ L
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Systematics

Simple estimates

L 3 |
1.4 2 central value Ys

M
1ol | Y, | error|Ys— Yg|
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Systematics

Simple estimates

L 3 |
1.4 2 central value Ys

M Y, | error|Ys — Y]
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Systematics

Simple estimates

L 3 |
1.4 2 central value Yy

M Y. | error|Yy — Yg|
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Si

1.4

1.2

mple estimates

‘ \
0 0.05

!
0.1

Systematics

7| central value Yp

| error | Yy — V5|

You can do a linear fit if you have prior knowledge on the slope
s=Constraint on slope is an additional data point
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Si

1.4

1.2

mple estimates

0 ‘ 0.05

0.1

Systematics

1 Constant fit reasonable

Q=0.15

i=Neglecting first order (linear) corrections to constant
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Systematics

Simple estimates

wNow we need to estimate systematic due to higher ordes
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Systematics

Systematics

One conservative strategy for systematics:

@ |dentify all higher order effects you have to neglect
@ For each of them:

e Repeat the entire analysis treating this one effect differently
e Add the spread of results to systematics

e Do not do suboptimal analyses
e Do not double-count analyses

make sure there are no unknown unknowns
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Let’s practice!
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