
Introduction Autocorrelation Correlator fits Bootstrap Chiral fits Quality Systematics Summary

Data analysis (in latice QCD)

Christian Hoelbling
Bergische Universität Wuppertal

Lattice Practices 2012
Oct. 10-11, 2012, DESY Zeuthen

1/45 Christian Hoelbling (Wuppertal) Data analysis



Introduction Autocorrelation Correlator fits Bootstrap Chiral fits Quality Systematics Summary

Basic task

Goal of phenomenological lattice QCD:
Compute expectation values of physical observables
(masses, matrix elements,...)
Get reliable total errors of physical predictions
Use a minimum amount of computer time to obtain them

Data analysis should:
provide results with reliable total erros
show how to efficiently improve the results

It’s not about the final number, it’s all about reliable errors
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Errors

Errors fall into 2 broad categories:
Statistical errors:

Origin: stochastic evaluation of the path integral
Can be treated by standard methods (e.g. bootstrap)

Systematic errors:
Origin: our lack of knowledge
Can not be computed, only estimated

Keep good balance between the two!

All systematics needs to be included for a correct result!
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What we will practice

In this course, we will:
Generate fake propagators

Everyone deals with a separate set
We know the solution

Extract ground state mass (exercise 1)
Extra/interpolate an observable to the “physical point”
(exercise 2)
“Lattice practices”: focus on practical aspects
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Autocorrelation
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Lattice data are typically Markov chains:
Each ensemble is based on the previous one
Need independent ensembles in equilibrium distribution

Two problems:
Thermalization

Affects only beginning
Cut initial configs

Autocorrelation
Reduces number of
independent configs
Different per observable
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Autocorrelation
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Affects only beginning
Cut initial configs

Autocorrelation
Reduces number of
independent configs
Different per observable
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Autocorrelation - definitions

Given a time series at , the autocorrelation is the correlation of
the time series with itself at a lag T

R(T ) =

〈
(at − 〈at〉)(aT +t − 〈aT +t〉)

〉
〈at〉〈aT +t〉

In a stationary random process

R(T ) ∼ e−T/τ

with the autocorrelation time τ
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Autocorrelation - effects

We usually compute the integrated autocorrelation time

τint =
N∑

T =1

R(T ) ∼
∫ ∞

0
dTe−T/τ = τ

Autocorrelation reduces the effective number of measurements

σ2
〈a〉 ≈

σ2
a

N
Minimize autocorrelation: blocking the data

aX =
1
B

B−1∑
b=0

aBX+b
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Autocorrelation - effects

We usually compute the integrated autocorrelation time

τint =
N∑

T =1

R(T ) ∼
∫ ∞

0
dTe−T/τ = τ

Autocorrelation reduces the effective number of measurements

σ2
〈a〉 ≈

σ2
a

N
(1 + 2τint)

Minimize autocorrelation: blocking the data

aX =
1
B

B−1∑
b=0

aBX+b
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Difficult to compute τint accurately
Time series long enough
Observable dependent
Global observables slower

Example: plaquette in DDHMC
(Chowdhury et. al (2012))
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Autocorrelation - packages

There is a standard package you can feed your time series to:
U. Wolff, Monte Carlo errors with less errors,
Comput.Phys.Commun. 156:143-153,2004;
Erratum-ibid.176:383,2007
hep-lat/0306017
MATLAB code can be found at:
http://www.physik.hu-berlin.de/com/ALPHAsoft/
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Ground state extraction
+Euclidean correlation
function

ct = 〈0|O†(t)O(0)|0〉

+Insert 1 = |i〉〈i |∑
i

〈0|eHtO†(0)e−Ht |i〉〈i |O(0)|0〉

+Eigenbasis |i〉 of H∑
i

|〈0|O(0)|i〉|2e−(Ei−E0)t t

C
(t)

For t →∞:
+ Lightest state couling to O dominates: ct ∝ e−M·t

+ Mt+ 1
2

= log[ct/ct+1], prefactor Ûmatrix element
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Signals from propagators

There are several complications
Ground state coupling may be small
Signal decays exponentially, noise not always
There are backward (periodic BC) or border (open/fixed
BC) contributions
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Signals from propagators

There are several complications
Ground state coupling may be small
Signal decays exponentially, noise not always
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Excited state dominance

Small coupling of ground state is not an academic problem
Occurs especially in resonant channels
Ground state needs virtual qq̄ production
Different operators couple very differently

L

E

Spectral densityFinite volume energy levels
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Propagator forms

Single state, propagating forward:

cf (t) = c0
f e−mt

The backward contribution:

cb(t) = c0
be−m(T−t)

Include contributions warping around the lattice (tiny):

cf (t)= c0
f

(
e−mt +e−m(T +t) + . . .

)
= c0

f e−mt×
∞∑

n=0

e−nmT

= c0
f e−mt 1

1− e−mT
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Propagator forms

For T (P) symmetric (c0 = c0
f = c0

b)
resp. antisymmetric (c0 = c0

f = −c0
b):

ct =
c0

1− e−mT

(
e−mt +

−e−m(T−t)
)

=
c0

1− e−mT e−m T
2 ×


cosh

(
m
(T

2 − t
))

sinh
(
m
(T

2 − t
))

Effective mass Mt+ 1
2

from numerical solution of:

ct+1

ct
=

cosh
(

Mt+ 1
2

(T
2 − t − 1

))
cosh

(
Mt+ 1

2

(T
2 − t

))
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Propagator forms
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f = c0
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ct =
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=
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(
m
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Mass plateaus
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Analytical 3-point expression (we will use this):

Mt+ 1
2

= acosh
ct+1 + ct−1

2ct
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Mass fit

After identifying plateau range, we fit the propagators with

pt =
c0

1− e−mT

(
e−mt ± e−m(T−t)

)
where m and c0 are fit parameters
Maximum likelihood fit assuming normal error distribution:

χ2 = (c − p)s(Σ−1)st (c − p)t → min

Data points c, fit function p and covariance matrix Σ

Σst = 〈(cs − 〈cs〉)(ct − 〈ct〉)〉

Usual variance in diagonal elements Σtt = σ(ct )
2
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Fit results

From a fit we in principle get 3 things:
3 The most likely value of the fit parameters

Values of the parameters at χ2 → min

3 Standard errors of the parameters
(more generally, confidence regions)

Contours of constant ∆χ2 = χ2 − χ2
min

3 The quality of the fit

From Q =
Γ( n

2 ,
χ2
2 )

Γ( n
2 ) =

∫∞
χ2
2

t
n
2−1e−t dt∫∞

0 t
n
2−1e−t dt

Q: probability that - given the model - the data are at least
as far off the prediction as the real data

+ Q should be a flat random value ∈ [0,1]
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Correlations

For uncorrelated data, Σ is diagonal

Cst =
Σst

σ(cs)σ(ct )

Typical (estimated) normalized covariance C for a correlator:

1.0000 0.9963 0.9840 0.9746 0.9509
0.9963 1.0000 0.9912 0.9801 0.9595
0.9840 0.9912 1.0000 0.9934 0.9846
0.9746 0.9801 0.9934 1.0000 0.9912
0.9509 0.9595 0.9846 0.9912 1.0000

Eigenvalues:

4.9224 0.0661 0.0059 0.0041 0.0014
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Problems with correlations

The structure of the covariance matrix can be problematic
Covariance matrix determined statistically
In C−1, small modes dominate
Smallest modes have large errors

One can:
Do an uncorrelated fit: Σ diagonal
Truncate small eigenmodes

Truncate them (optionally correct diagonal)
Average them (Michael, Mc Kerrell, 1994)

Problem: Q and parameter errors useless
Û Need to be determined in some other way
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Computing errors

When you make N measurements ai , you compute
the estimate of the expectation value

〈a〉 =
1
N

N∑
i=1

ai

the estimated error of the expectation value

σ2
〈a〉 =

1
N

1
N − 1

N∑
i=1

(ai − 〈a〉)

From O(100) configs, we get one mass measurement!
Do we have to repeat this O(100) times to estimate σ2?
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Resampling

No! We can resample our ensemble:
Given N configs ci and the full ensemble E = {1, . . . ,N}
Given an observable O(A) on an arbitrary Ensemble A

Û We can produce one resampled ensembles B1 by drawing
with repetition N configs from E

Û We actually draw NB resampled ensembles Bi

Û We compute O = O(E) and Oi = O(Bi)

The distribution of Oi mimics independent measurements!

σ2
O ≈ σ

2(Oi) 〈O〉 ≈ O + O − 〈Oi〉

24/45 Christian Hoelbling (Wuppertal) Data analysis
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Resampling

No! We can resample our ensemble:
Given N configs ci and the full ensemble E = {1, . . . ,N}
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Û We can produce one resampled ensembles B1 by drawing
with repetition N configs from E

Û We actually draw NB resampled ensembles Bi
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The distribution of Oi mimics independent measurements!

σ2
O ≈ σ

2(Oi) 〈O〉 ≈ O + O − 〈Oi〉777
Usually better not to correct (stability)
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Jackknife

Jackknife is similar to bootstrap:
Û Cut the ensemble E into NJ same size blocks
Û Form NJ resampled ensembles Ji by leaving out one block

from E at a time
Û Compute O = O(E) and Oi = O(Ji)

σ2
O ≈ (NJ − 1)σ2(Oi) 〈O〉 ≈ O + (NJ − 1)

(
O − 〈Oi〉

)

25/45 Christian Hoelbling (Wuppertal) Data analysis
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Jackknife

Jackknife is similar to bootstrap:
Û Cut the ensemble E into NJ same size blocks
Û Form NJ resampled ensembles Ji by leaving out one block

from E at a time
Û Compute O = O(E) and Oi = O(Ji)

σ2
O ≈ (NJ − 1)σ2(Oi) 〈O〉 ≈ O + (NJ − 1)

(
O − 〈Oi〉

)
7777777

Usually better not to correct (stability)
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Using bootstrap

Some practical notes:
Use bootstrap if you can (more expensive though)
Choose NB as large as you can
Do the complete analysis within the bootstrap

This does even include averaging over different analysis
procedures for systematics etc.
Only exception are estimates of global ensemble properties
like e.g. (co-)variances needed for fits within the bootstrap.

Û nesting bootstraps usually not necessary

Not necessary if O is linear: σJN ≡ σnaive

You may extract more information from distribution of Oi
Confidence intervals, percentiles, etc.
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Your pion masses

0.2 0.21 0.22 0.23
m

π
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Rho propagator

10 -8
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Rho propagator
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Fits with x-errors

A typical analysis situation:
We have collected data at different bare quark masses
We want to make a prediction at the physical point (for
simplicity we ignore continuum and infinite volume)

How do we proceed?
Define the physical point (e.g. Mπ)
Extra/interpolate target observable there

Mπ is not a parameter!

29/45 Christian Hoelbling (Wuppertal) Data analysis
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X-errors

Fitting data with errors in the x-axis:
Û add each x-value as a fit parameter
Û constrain each x-value with measurement

�t curve

best x-y point
best y-only point

data point

Uncorrelated case:

χ2 → χ2 +
∑

i

(xi − pi)
2/σ2

xi

Generalization with full covariance matrix
. Big covariance matrices lead to uncontrolled fits

Mandatory to eliminate spurious correlations
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Correlated errors

Special case: xi , yi correlated, but uncorrelated with xj , yj i 6= j
Û Appears naturally in fit of independent ensembles
Û Covariance matrix reduces to block diagonal form

Contribution to χ2:

χ2 ⊃ χ2
i
(

∆x ∆y
)( Σ−1

xx Σ−1
xy

Σ−1
xy Σ−1

yy

)(
∆x
∆y

)

χ2
i constant along an ellipse

Covariance Σ−1
xy tilts the axis

3 Including x-errors can never increase χ2
i

3 Including x-errors does not change n (d.o.f.)
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Error ellipses
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General strategy

Sometimes subsets of data points are correlated
3 independent ensembles at each of 3 lattice spacings
A measurement of each of the 3 lattice spacings ai

How do you extrapolate the observable M to the continuum?

Form M = Mlat/ai for each ensemble
Error on M = Mlat/ai is combination of error on Mlat and ai

7 Introduces correlations between independent ensembles

33/45 Christian Hoelbling (Wuppertal) Data analysis
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General strategy

Sometimes subsets of data points are correlated
3 independent ensembles at each of 3 lattice spacings
A measurement of each of the 3 lattice spacings ai

How do you extrapolate the observable M to the continuum?

Form M = Mlat/ai for each ensemble
Error on M = Mlat/ai error on Mlat, ignore ai

7 Lattice spacing error not accounted for
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General strategy

Sometimes subsets of data points are correlated
3 independent ensembles at each of 3 lattice spacings
A measurement of each of the 3 lattice spacings ai

How do you extrapolate the observable M to the continuum?

Introduce a fit parameter âi for each lattice spacing
Constrain âi with measurement
Fit Mlat = Mâi for each ensemble

33/45 Christian Hoelbling (Wuppertal) Data analysis
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Combined fit quality

When doing your continuum/chiral/infinite volume fit
Data points are often results of fits themselves
How do you compute the quality of cascaded fits?

Theoretical ideal (not feasible):
Do one big fit

All original fits worked fully correlated:
Sum χ2 and d.o.f. of all fits ÛQ

Original fits not fully correlated:
Treat data points as input, just compute Q of final fit

34/45 Christian Hoelbling (Wuppertal) Data analysis
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Fit quality

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Degrees of freedom n

50%
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90%
99%

95%

68%
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5%

1%

χ2/n

(PDG, 2012)
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Which fit is better?

The following slides compare 2 fits each

All data are uncorrelated

Which fit can be trusted more?

36/45 Christian Hoelbling (Wuppertal) Data analysis



Introduction Autocorrelation Correlator fits Bootstrap Chiral fits Quality Systematics Summary

Which fit is better?

0 0.05 0.1
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Which fit is better?

0 0.05 0.1

1.2

1.4

Q = 0.15
0 0.05 0.1

1.2

1.4

Q =????

Never leave 0 d.o.f., you loose control over fit quality
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Which fit is better?

0 0.05 0.1

1.2

1.4

0 0.05 0.1

1.2

1.4
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Which fit is better?

0 0.05 0.1

1.2

1.4

Q = 0.42

0 0.05 0.1

1.2

1.4

Q = 0.64

Do not try to extract too much from the data
The displayed data have no sensitivity towards a curvature
term. It is compatible with 0.
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Which fit is better?

0 0.05 0.1

1.2

1.4

0 0.05 0.1

1.2

1.4
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Which fit is better?

0 0.05 0.1

1.2

1.4

Q = 0.31
0 0.05 0.1

1.2

1.4

Q = 1.00

1−Q = 8× 10−13 Ûwinning the lottery is more probable
than having a result this good by chance
Data are suspicious (unrecognized correlation)
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Which fit is better?

0 0.05 0.1

1.2

1.4
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Which fit is better?

0 0.05 0.1

1.2

1.4

Q = 0.54
0 0.05 0.1

1.2

1.4

Q = 0.002

Linear modell is not sufficient for these data
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Practical hints

Some hints for numerically minimizing a complex χ2 function
Give reasonable starting values

Solver might find a wrong minimum or crash
Build up your fit parameter by parameter

Start with all but the most relevant parameters constrained
Minimize the constrained fit first
When it has converged, free one more parameter

Check pulls and bootstrap samples for outliers
A good fit can identify problematic input data

Always look at the fit to check it does fit the data

41/45 Christian Hoelbling (Wuppertal) Data analysis
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Systematics

How do we compute the systematic error?
We don’t
Systematics can only be estimated
There is no single correct procedure

Example: systematic error of x → 0

0 0.05 0.1

1.2

1.4

Y1

Y2
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Simple estimates

0 0.05 0.1

1.2

1.4

Y1

Y2

YE

YM
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Simple estimates

0 0.05 0.1

1.2

1.4

Y1

Y2

YE

YM

central value Y2

error |Y2 − YE |

no linear fit
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Simple estimates
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Simple estimates
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Simple estimates

0 0.05 0.1

1.2

1.4

Y1

Y2

YE

YM

YB
central value YB

error |YM − YB|

You can do a linear fit if you have prior knowledge on the slope
+Constraint on slope is an additional data point
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Simple estimates

0 0.05 0.1

1.2

1.4

Y1

Y2

YE

YM

YB
Constant fit reasonable

Q = 0.15

These are estimates for what systematics?
+Neglecting first order (linear) corrections to constant
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Simple estimates

0 0.05 0.1

1.2

1.4

One more data point: error on linear term is now statistical
+Now we need to estimate systematic due to higher ordes
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Systematics

One conservative strategy for systematics:
Identify all higher order effects you have to neglect
For each of them:

Repeat the entire analysis treating this one effect differently
Add the spread of results to systematics

Important:
Do not do suboptimal analyses
Do not double-count analyses

make sure there are no unknown unknowns
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Let’s practice!
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