Introduction Autocorrelation Correlator fits Bootstrap Chiral fits Quality Systematics Summary

Christian Hoelbling Bergische Universität Wuppertal

Lattice Practices 2012 Oct. 10-11, 2012, DESY Zeuthen

- Goal of phenomenological lattice QCD:
 - Compute expectation values of physical observables (masses, matrix elements,...)
 - Get reliable total errors of physical predictions
 - Use a minimum amount of computer time to obtain them
- Data analysis should:
 - provide results with reliable total erros
 - show how to efficiently improve the results

It's not about the final number, it's all about reliable errors

Errors fall into 2 broad categories:

- Statistical errors:
 - Origin: stochastic evaluation of the path integral
 - Can be treated by standard methods (e.g. bootstrap)
- Systematic errors:
 - Origin: our lack of knowledge
 - Can not be computed, only estimated

Keep good balance between the two!

• All systematics needs to be included for a correct result!

What we will practice

In this course, we will:

- Generate fake propagators
 - Everyone deals with a separate set
 - We know the solution
- Extract ground state mass (exercise 1)
- Extra/interpolate an observable to the "physical point" (exercise 2)
- "Lattice practices": focus on practical aspects

Lattice data are typically Markov chains:

- Each ensemble is based on the previous one
- Need independent ensembles in equilibrium distribution
- Two problems:
 - Thermalization
 - Affects only beginning
 - Cut initial configs
 - Autocorrelation
 - Reduces number of

Lattice data are typically Markov chains:

- Each ensemble is based on the previous one
- Need independent ensembles in equilibrium distribution
- Two problems:
 - Thermalization
 - Affects only beginning Cut initial configs
 - Autocorrelation
 - Reduces number of independent configs
 - Different per observable ۲

Autocorrelation - definitions

Given a time series a_t , the autocorrelation is the correlation of the time series with itself at a lag *T*

$$R(T) = \frac{\langle (a_t - \langle a_t \rangle)(a_{T+t} - \langle a_{T+t} \rangle) \rangle}{\langle a_t \rangle \langle a_{T+t} \rangle}$$

In a stationary random process

$$R(T) \sim e^{-T/\tau}$$

with the autocorrelation time τ

Autocorrelation - effects

We usually compute the integrated autocorrelation time

$$\tau_{\rm int} = \sum_{T=1}^{N} R(T) \sim \int_0^\infty dT e^{-T/\tau} = \tau$$

Autocorrelation reduces the effective number of measurements

 $\sigma_{\langle a \rangle}^2 \approx \frac{\sigma_a^2}{N}$ Minimize autocorrelation: blocking the data

$$\boldsymbol{a}_{\boldsymbol{X}} = \frac{1}{B} \sum_{b=0}^{B-1} \boldsymbol{a}_{B\boldsymbol{X}+b}$$

Autocorrelation - effects

We usually compute the integrated autocorrelation time

$$\tau_{\rm int} = \sum_{T=1}^{N} R(T) \sim \int_0^\infty dT e^{-T/\tau} = \tau$$

Autocorrelation reduces the effective number of measurements

 $\sigma_{\langle a \rangle}^2 \approx \frac{\sigma_a^2}{N} (1 + 2\tau_{int})$ Minimize autocorrelation: blocking the data

$$\boldsymbol{a}_{\boldsymbol{X}} = \frac{1}{B} \sum_{b=0}^{B-1} \boldsymbol{a}_{\boldsymbol{B}\boldsymbol{X}+b}$$

B_{5b}: L24T48, β = 5.6, κ = 0.15825

Difficult to compute τ_{int} accurately

- Time series long enough
- Observable dependent
- Global observables slower Example: plaquette in DDHMC

(Chowdhury et. al (2012))

Autocorrelation - packages

There is a standard package you can feed your time series to: U. Wolff, Monte Carlo errors with less errors, Comput.Phys.Commun. 156:143-153,2004; Erratum-ibid.176:383,2007 hep-lat/0306017 MATLAB code can be found at:

http://www.physik.hu-berlin.de/com/ALPHAsoft/

Ground state extraction

ISE Euclidean correlation function

 $m{c}_t = \langle 0 | \mathcal{O}^{\dagger}(t) \mathcal{O}(0) | 0
angle$

Easert 1 = $|i\rangle\langle i|$

 $\sum_{i} \langle 0| \mathbf{e}^{Ht} \mathcal{O}^{\dagger}(0) \mathbf{e}^{-Ht} | i \rangle \langle i| \mathcal{O}(0) | 0 \rangle$

Eigenbasis $|i\rangle$ of *H*

$$\sum_{i} |\langle \mathbf{0} | \mathcal{O}(\mathbf{0}) | i \rangle|^2 \mathrm{e}^{-(\boldsymbol{E}_i - \boldsymbol{E}_0)t}$$

For $t \to \infty$:

■ Lightest state couling to \mathcal{O} dominates: $c_t \propto e^{-M \cdot t}$ ■ $M_{t+\frac{1}{2}} = log[c_t/c_{t+1}]$, prefactor → matrix element

Signals from propagators

There are several complications

- Ground state coupling may be small
- Signal decays exponentially, noise not always
- There are backward (periodic BC) or border (open/fixed BC) contributions

Signals from propagators

There are several complications

- Ground state coupling may be small
- Signal decays exponentially, noise not always
- There are backward (periodic BC) or border (open/fixed BC) contributions

Excited state dominance

Small coupling of ground state is not an academic problem

- Occurs especially in resonant channels
- Ground state needs virtual $q\bar{q}$ production
- Different operators couple very differently

Propagator forms

Single state, propagating forward:

$$c_f(t) = c_f^0 e^{-mt}$$

The backward contribution:

$$c_b(t) = c_b^0 e^{-m(T-t)}$$

Include contributions warping around the lattice (tiny):

$$c_f(t) = c_f^0 \left(e^{-mt} + e^{-m(T+t)} + \dots \right)$$
$$= c_f^0 e^{-mt} \times \sum_{n=0}^{\infty} e^{-nmT}$$
$$= c_f^0 e^{-mt} \frac{1}{1 - e^{-mT}}$$

Propagator forms

For T (P) symmetric ($c^0 = c_f^0 = c_b^0$) resp. antisymmetric ($c^0 = c_f^0 = -c_b^0$):

$$c_{t} = \frac{c^{0}}{1 - e^{-mT}} \left(e^{-mt} + e^{-m(T-t)} \right)$$
$$= \frac{c^{0}}{1 - e^{-mT}} e^{-m\frac{T}{2}} \times \begin{cases} \cosh\left(m\left(\frac{T}{2} - t\right)\right)\\ \sinh\left(m\left(\frac{T}{2} - t\right)\right) \end{cases}$$

Effective mass $M_{t+\frac{1}{2}}$ from numerical solution of:

$$\frac{c_{t+1}}{c_t} = \frac{\cosh\left(M_{t+\frac{1}{2}}\left(\frac{T}{2} - t - 1\right)\right)}{\cosh\left(M_{t+\frac{1}{2}}\left(\frac{T}{2} - t\right)\right)}$$

Propagator forms

For T (P) symmetric ($c^0 = c_f^0 = c_b^0$) resp. antisymmetric ($c^0 = c_f^0 = -c_b^0$):

$$c_{t} = \frac{c^{0}}{1 - e^{-mT}} \left(e^{-mt} + e^{-m(T-t)} \right)$$
$$= \frac{c^{0}}{1 - e^{-mT}} e^{-m\frac{T}{2}} \times \begin{cases} \cosh\left(m\left(\frac{T}{2} - t\right)\right)\\ \sinh\left(m\left(\frac{T}{2} - t\right)\right) \end{cases}$$

Effective mass $M_{t+\frac{1}{2}}$ from numerical solution of:

$$\frac{c_{t+1}}{c_t} = \frac{\sinh\left(M_{t+\frac{1}{2}}\left(\frac{T}{2} - t - 1\right)\right)}{\sinh\left(M_{t+\frac{1}{2}}\left(\frac{T}{2} - t\right)\right)}$$

Mass plateaus

Analytical 3-point expression (we will use this):

$$M_{t+\frac{1}{2}} = acosh\frac{c_{t+1} + c_{t-1}}{2c_t}$$

After identifying plateau range, we fit the propagators with

$$\boldsymbol{p}_t = \frac{c^0}{1 - e^{-mT}} \left(e^{-mt} \pm e^{-m(T-t)} \right)$$

where m and c^0 are fit parameters Maximum likelihood fit assuming normal error distribution:

$$\chi^2 = (\mathbf{c} - \mathbf{p})_s (\Sigma^{-1})_{st} (\mathbf{c} - \mathbf{p})_t \to \min$$

Data points c, fit function p and covariance matrix Σ

$$\Sigma_{st} = \langle (c_s - \langle c_s \rangle) (c_t - \langle c_t \rangle)
angle$$

Usual variance in diagonal elements $\Sigma_{tt} = \sigma(c_t)^2$

From a fit we in principle get 3 things:

- ✓ The most likely value of the fit parameters
 - Values of the parameters at $\chi^2 \rightarrow \min$
- ✓ Standard errors of the parameters (more generally, confidence regions)
 - Contours of constant $\Delta \chi^2 = \chi^2 \chi^2_{min}$
- ✓ The quality of the fit

• From
$$Q = \frac{\Gamma(\frac{n}{2}, \frac{\chi^2}{2})}{\Gamma(\frac{n}{2})} = \frac{\int_{\frac{\chi^2}{2}}^{\infty} t^{\frac{n}{2}-1}e^{-t}dt}{\int_{0}^{\infty} t^{\frac{n}{2}-1}e^{-t}dt}$$

- *Q*: probability that given the model the data are at least as far off the prediction as the real data
- $\square Q$ should be a flat random value $\in [0, 1]$

For uncorrelated data, Σ is diagonal

$$\boldsymbol{C}_{st} = \frac{\boldsymbol{\Sigma}_{st}}{\sigma(\boldsymbol{C}_s)\sigma(\boldsymbol{C}_t)}$$

Typical (estimated) normalized covariance C for a correlator:

1.0000	0.9963	0.9840	0.9746	0.9509
0.9963	1.0000	0.9912	0.9801	0.9595
0.9840	0.9912	1.0000	0.9934	0.9846
0.9746	0.9801	0.9934	1.0000	0.9912
0.9509	0.9595	0.9846	0.9912	1.0000

Eigenvalues:

4.9224 0.0661 0.0059 0.0041 0.0014

Problems with correlations

The structure of the covariance matrix can be problematic

- Covariance matrix determined statistically
- In C⁻¹, small modes dominate
- Smallest modes have large errors
- One can:
 - Do an uncorrelated fit: Σ diagonal
 - Truncate small eigenmodes
 - Truncate them (optionally correct diagonal)
 - Average them (Michael, Mc Kerrell, 1994)

Problem: Q and parameter errors useless

➤ Need to be determined in some other way

Christian Hoelbling (Wuppertal) Data analysis

When you make N measurements a_i , you compute

the estimate of the expectation value

$$\langle a \rangle = rac{1}{N} \sum_{i=1}^{N} a_i$$

• the estimated error of the expectation value

$$\sigma_{\langle a \rangle}^2 = \frac{1}{N} \frac{1}{N-1} \sum_{i=1}^{N} (a_i - \langle a \rangle)$$

From $\mathcal{O}(100)$ configs, we get **one** mass measurement! Do we have to repeat this $\mathcal{O}(100)$ times to estimate σ^2 ?

No! We can resample our ensemble:

- Given *N* configs c_i and the full ensemble $E = \{1, \ldots, N\}$
- Given an observable O(A) on an arbitrary Ensemble A
- We can produce one resampled ensembles B₁ by drawing with repetition N configs from E
- ➤ We actually draw N_B resampled ensembles B_i
- → We compute $\overline{O} = O(E)$ and $O_i = O(B_i)$

The distribution of O_i mimics independent measurements!

$$\sigma_{O}^{2} \approx \sigma^{2}(O_{i}) \qquad \langle O \rangle \approx \overline{O} + \overline{O} - \langle O_{i} \rangle$$

No! We can resample our ensemble:

- Given *N* configs c_i and the full ensemble $E = \{1, \ldots, N\}$
- Given an observable O(A) on an arbitrary Ensemble A
- → We can produce one resampled ensembles B₁ by drawing with repetition N configs from E
- ➤ We actually draw N_B resampled ensembles B_i
- → We compute $\overline{O} = O(E)$ and $O_i = O(B_i)$

The distribution of O_i mimics independent measurements!

$$\sigma_O^2 \approx \sigma^2(O_i) \qquad \langle O \rangle \approx \overline{O} + \mathbf{X} \mathbf{X} \mathbf{X}$$
Isually better not to correct (stability)

L.

Jackknife is similar to bootstrap:

- → Cut the ensemble *E* into N_J same size blocks
- ➤ Form N_J resampled ensembles J_i by leaving out one block from E at a time
- → Compute $\overline{O} = O(E)$ and $O_i = O(J_i)$

 $\sigma_O^2 \approx (N_J - 1)\sigma^2(O_i) \qquad \langle O \rangle \approx \overline{O} + (N_J - 1)\left(\overline{O} - \langle O_i \rangle\right)$

Jackknife is similar to bootstrap:

- → Cut the ensemble *E* into N_J same size blocks
- → Form N_J resampled ensembles J_i by leaving out one block from E at a time
- → Compute $\overline{O} = O(E)$ and $O_i = O(J_i)$

 $\sigma_O^2 \approx (N_J - 1)\sigma^2(O_i) \qquad \langle O \rangle \approx \overline{O} + \lambda \langle X - X \rangle \langle O \rangle$

Usually better not to correct (stability)

Some practical notes:

- Use bootstrap if you can (more expensive though)
- Choose N_B as large as you can
- Do the complete analysis within the bootstrap
 - This does even include averaging over different analysis procedures for systematics etc.
 - Only exception are estimates of global ensemble properties like e.g. (co-)variances needed for fits within the bootstrap.
 - ➤ nesting bootstraps usually not necessary
- Not necessary if O is linear: $\sigma_{JN} \equiv \sigma_{naive}$
- You may extract more information from distribution of O_i
 - Confidence intervals, percentiles, etc.

Your pion masses

A typical analysis situation:

- We have collected data at different bare quark masses
- We want to make a prediction at the physical point (for simplicity we ignore continuum and infinite volume)

How do we proceed?

- Define the physical point (e.g. M_{π})
- Extra/interpolate target observable there

 M_{π} is not a parameter!

Special case: x_i , y_i correlated, but uncorrelated with x_j , y_j $i \neq j$

- ➤ Appears naturally in fit of independent ensembles
- → Covariance matrix reduces to block diagonal form Contribution to χ^2 :

$$\chi^{2} \supset \chi^{2}_{i} \left(\begin{array}{cc} \Delta x & \Delta y \end{array} \right) \left(\begin{array}{cc} \Sigma^{-1}_{xx} & \Sigma^{-1}_{xy} \\ \Sigma^{-1}_{xy} & \Sigma^{-1}_{yy} \end{array} \right) \left(\begin{array}{c} \Delta x \\ \Delta y \end{array} \right)$$

- χ_i^2 constant along an ellipse
- Covariance Σ_{xy}^{-1} tilts the axis
- ✓ Including x-errors can never increase χ_i^2
- ✓ Including x-errors does not change *n* (d.o.f.)

Error ellipses

Sometimes subsets of data points are correlated

- 3 independent ensembles at each of 3 lattice spacings
- A measurement of each of the 3 lattice spacings *a_i*

How do you extrapolate the observable *M* to the continuum?

- Form $M = M_{\text{lat}}/a_i$ for each ensemble
- Error on $M = M_{\text{lat}}/a_i$ is combination of error on M_{lat} and a_i
- X Introduces correlations between independent ensembles

Sometimes subsets of data points are correlated

- 3 independent ensembles at each of 3 lattice spacings
- A measurement of each of the 3 lattice spacings *a_i*

How do you extrapolate the observable *M* to the continuum?

- Form $M = M_{\text{lat}}/a_i$ for each ensemble
- Error on $M = M_{\text{lat}}/a_i$ error on M_{lat} , ignore a_i
- X Lattice spacing error not accounted for

Sometimes subsets of data points are correlated

- 3 independent ensembles at each of 3 lattice spacings
- A measurement of each of the 3 lattice spacings *a_i*

How do you extrapolate the observable *M* to the continuum?

- Introduce a fit parameter â_i for each lattice spacing
- Constrain \hat{a}_i with measurement
- Fit $M_{\text{lat}} = M\hat{a}_i$ for each ensemble

Combined fit quality

When doing your continuum/chiral/infinite volume fit

- Data points are often results of fits themselves
- How do you compute the quality of cascaded fits?

Theoretical ideal (not feasible):

Do one big fit

All original fits worked fully correlated:

• Sum χ^2 and d.o.f. of all fits $\rightarrow Q$

Original fits not fully correlated:

• Treat data points as input, just compute Q of final fit

The following slides compare 2 fits each

All data are uncorrelated

Which fit can be trusted more?

Never leave 0 d.o.f., you loose control over fit quality

- Do not try to extract too much from the data
- The displayed data have no sensitivity towards a curvature term. It is compatible with 0.

- 1 − Q = 8 × 10⁻¹³ → winning the lottery is more probable than having a result this good by chance
- Data are suspicious (unrecognized correlation)

Linear modell is not sufficient for these data

Some hints for numerically minimizing a complex χ^2 function

- Give reasonable starting values
 - Solver might find a wrong minimum or crash
- Build up your fit parameter by parameter
 - Start with all but the most relevant parameters constrained
 - Minimize the constrained fit first
 - When it has converged, free one more parameter
- Check pulls and bootstrap samples for outliers
 - A good fit can identify problematic input data
- Always look at the fit to check it does fit the data

How do we compute the systematic error?

- We don't
- Systematics can only be estimated
- There is no single correct procedure

You can do a linear fit if you have prior knowledge on the slope Constraint on slope is an additional data point

Reglecting first order (linear) corrections to constant

One more data point: error on linear term is now statistical Now we need to estimate systematic due to higher ordes One conservative strategy for systematics:

- Identify all higher order effects you have to neglect
- For each of them:
 - Repeat the entire analysis treating this one effect differently
 - Add the spread of results to systematics
- Important:
 - Do not do suboptimal analyses
 - Do not double-count analyses

make sure there are no unknown unknowns

Let's practice!