
CaSToRC
CaSToRC

Optimization

Giannis Koutsou

Computational based Science and Technology Research Center (CaSToRC)
The Cyprus Institute

Lattice Practices 2012, 10th October 2012, Zeuthen

CaSToRC

Objectives

● Understand/Expect performance
– Performance models
– Connection to hardware specifications

● Measure performance
● Improve performance (optimization)
– Single-core optimizations
• Vectorization

– Parallelization
• Shared-memory (i.e. thread-level)
• Distributed memory (i.e. message passing)

CaSToRC

Understanding performance

● Machine characteristics which influence performance
– Memory hierarchy
– Floating-point rate
– Bandwidths

CaSToRC

Understanding performance

● Machine characteristics which influence performance
– Memory hierarchy
– Floating-point rate
– Bandwidths

● Simple model
– R: register file
– M: memory

– βF: Floating point rate

– βM: Memory bandwidth

R

M

β
F

β
M

CaSToRC

Understanding performance

● Machine characteristics which influence performance
– Memory hierarchy
– Floating-point rate
– Bandwidths

● Simple model
– R: register file
– C: cache
– M: memory

– βF: Floating point rate

– βM: Memory-to-cache bandwidth

– βC: Cache-to-register file bandwidth

–

R

M

β
F

R R R

C

β
F

β
F

β
F

β
C

β
M

β
C

CaSToRC

Understanding performance

● Simple model for completion of a kernel k with on a hardware sub module x, with
through-put βx

t x
k=
I x
k

β x
● Example, double precision
– Floating-point: 2 per element
– Memory transfers: 2 in + 1 out = 3*8 = 24 bytes per element

– Assume hardware with β
F
 = 12 Gflop/s and β

Μ
 = 24 Gbyte/s

– t
FP

= 1/6 ns per element

– t
MT

=

1 ns per element

y [:]←a∗x [:]+ y [:]

CaSToRC

Understanding performance

● Simple model for completion of a kernel k with on a hardware sub module x, with
through-put βx

t x
k=
I x
k

β x

● Example, double precision
– tFP= 1/6 ns per element

– tMT= 1 ns per element

– Assuming perfect overlap, execution time is the largest,

i.e. 1 ns per element

y [:]←a∗x [:]+ y [:]

CaSToRC

Measuring performance

● For the examples here:
–We know Ix for given kernel

–We only measure wall clock time

● Alternatively
– Read performance counter registers directly (e.g. via the

PAPI library), not covered here

CaSToRC

Measuring performance

● Reproducibility
– Typically performance measurements “jitter”
– Strictly speaking, one should repeat performance

measurement to perform a statistical analysis
– And perform many iterations of the same kernel and

obtain an average time

CaSToRC

Measuring performance

● Typical time-scales
– Typical clock-rate O(1) GHz, or one cycle per ns
– Typical bandwidths O(10) Gbyte/s
– Clock granularity
• Here we'll use gettimeofday()
• Returns seconds and microseconds since fixed time (the Epoc)
• Granularity of microseconds → O(seconds) benchmark runs for

reliable measurements

CaSToRC

Optimization

● Here we will talk about optimization on x86
architectures, though most of the items can be
generalized to other architectures

● We will cover:
– Single-core optimizations (vectorization)
–Multi-core parallelization (OpenMP)
– Some general info on the Message Passing Interface

CaSToRC

Optimization

● Vectorization
–Most processor architectures have some vector extensions for

vectorized math operations
– E.g. SSE (Intel), Altivec (PowerPC), QPX (BlueGene/Q) etc.
– Single Instruction Multiple Data (SIMD) operations
• One instruction is performed on vectors of data

– SSE3,4 supports 128-bit wide vectors
• 2 double-precision numbers
• 4 single-precision numbers

– SSE3,4 through-put: 1 multiply-then-add (madd) per cycle,

β
FP

=

4 DP flops per cycle or 8 SP flops per cycle

CaSToRC

● “Auto-vectorization” of compilers usually
inadequate for complex numbers

● Assume double precision complex multiplication:

● If a and b are stored as [re, im] in DP SSE registers
vectorization can become rather non-trivial

● In such cases it is useful to perform schedule
analysis

Optimization

c = a*b ⇒
c.re = a.re*b.re – a.im*b.im

c.im = a.re*b.im + a.im*b.re

CaSToRC

 Schedule analysis: SSE vectorization

• ra ld a← a.re a.im

• rb ld b← b.re b.im

• r3 movdup ra← a.im a.im

• r4 movd ra← a.re a.im

• r4 shuf r4← a.re a.re

• r3 mul r3, rb← a.im*b.re a.im*b.im

• r4 mul r4, rb← a.re*b.re a.re*b.im

• r3 shuf r3← a.im*b.im a.im*b.re

• r3 xor r3, sign← -a.im*b.im a.im*b.re

• r3 add r3, r4← (a*b).re (a*b).im

• c store r3← (a*b).re (a*b).im

c.re = a.re*b.re – a.im*b.im

c.im = a.re*b.im + a.im*b.re

• 3 load/stores

• 5 integer ops (move/shuffle)

• 3 floating point ops

CaSToRC

Optimization

● Vectorization: Intel with gcc
– Compiler provides “Intrinsics”, i.e. functions and types

used to manipulate vector registers and issue vector
instructions
– Avoids the need to write inline assembly
– Allows compiler certain chances of optimization
–More portable than inline assembly

CaSToRC

Optimization

● Vectorization: Intel with gcc #include <xmmintrin.h>
– Intrinsic types, can be initialized like structures

–Memory loaded in SSE registers must be 16-byte aligned

Single precision Double precision

__m128 x = {a, b, c, d}; __m128d x = {a, b};

Static Dynamic
double x __attribute__((aligned(16))) = 22; posix_memalign(&ptr, 16, size);

CaSToRC

Optimization

● Vectorization
– Loading, storing, multiply, add

– Note: there is no explicit “madd” intrinsic (or assembly op-code)
– You can hint for a “madd” by interchanging “mul” and “add”

Single precision Double precision

__m128 _mm_load_ps(float *); __m128d _mm_load_pd(double *);

_mm_store_ps(float *, __m128); _mm_store_pd(double *, __m128d);

c = _mm_mul_ps(a, b); c = _mm_mul_pd(a, b);

c = _mm_add_ps(a, b); c = _mm_add_pd(a, b);

CaSToRC

Optimization
● Vectorization
– Shuffle operations

– Instead of a mask, you can use the available macros
“_MM_SHUFFLE” and “_MM_SHUFFLE2” readily

Single precision Double precision

c = _mm_shuffle_ps(a, b, mask); c = _mm_shuffle_pd(a, b, mask);

mask: _MM_SHUFFLE([0-3],[0-3],[0-3],[0-3]) mask: _MM_SHUFFLE2([0-1],[0-1])

CaSToRC

Optimization
c = a * b (DP, complex)

__m128d register ra = {a.re, a.im};

__m128d register rb = {b.re, b.im};

__m128d register si = {-1, 1};

__m128d register r3 = _mm_shuffle_pd(ra, ra, _MM_SHUFFLE2(0,0));

__m128d register r4 = _mm_shuffle_pd(ra, ra, _MM_SHUFFLE2(1,1));

r3 = _mm_mul_pd(r3, rb);

r4 = _mm_mul_pd(r4, rb);

r3 = _mm_shuffle_pd(r3, r3, _MM_SHUFFLE2(0,1));

r3 = _mm_mul_pd(r3, si);

r3 = _mm_add_pd(r3, r4);

_mm_store_pd(&c, r3);

CaSToRC

Parallelization

● Essential to take advantage of today's multi-core
systems

● Two main distinctions:
– Shared memory model
• Processing elements share a common memory address space
• E.g. multiple cores sharing the same RAM

–Distributed memory model
• Memory is distributed and sharing of data is done via

communication
• E.g. nodes in a cluster

CaSToRC

Parallelization

● OpenMP
– Shared-memory model
– Allows for fast parallelization on-node
– Can define private and shared data
–Need to be careful when more than one thread accesses

(writes) to same location

CaSToRC

Parallelization

● OpenMP - parallelization
– Simple pragma-based parallelization
– Fork / Join model

Master thread

Worker threads

OMP parallel region

CaSToRC

Parallelization

● OpenMP - parallelization
–Works well for simple loops
–

–

–

#pragma omp parallel for

for(i=0; i<N; i++) { for(i=0; i<N; i++) {

... ...

} }

● With GCC, add -fopenmp to compiler arguments
● Control of number of threads
– Run-time env. variable: OMP_NUM_THREADS

CaSToRC

Parallelization

● OpenMP - functions
– Two important OpenMP functions

Function Description

int size = omp_get_num_threads(); Returns number of threads

int id = omp_get_thread_num(); Unique id for each thread

● More at openmp.org

CaSToRC

Parallelization

● The Message Passing Interface
– MPI: An Application Programmer Interface (API)
– A de facto standard for programming distributed memory

systems
– Current specification is version 2 (MPI-2)
– Several free (open) implementations, e.g.:
• Mvapich(2)
• OpenMPI

CaSToRC

The Library

● Includes
– Function definitions, types, constants and macros for the

MPI library are included in a single include file:

Fortran C

include “mpif.h” #include <mpi.h>

CaSToRC

The Library

● Compiling
– Compiling and linking is made easy with a wrapper-

compiler which most implementations provide. Invocation
is usually via:

Fortran C

mpif77 hello_world.f
mpif90 hello_world.f90

mpicc hello_world.c

CaSToRC

Runtime

● Running
– Running an MPI program is usually done via the mpirun or
mpiexec wrapper scripts, which take care of initializing the
appropriate environment for the parallel run:

Fortran and C

mpirun -np 2 ./a.out

CaSToRC

Basic concepts

● The distributed memory model
– Invocation of mpirun will run multiple instances of the same

program in parallel
–Without calls to MPI, all parallel instances will, ideally, run

and terminate identically
–With calls to MPI, one can:
• Differentiate between parallel instances (i.e., give each instance, or

process, a unique ID)
• Synchronize processes
• Send messages between processes

CaSToRC

Basics

● Initialization
– All MPI programs must begin with a call to MPI_Init() and

close with a call to MPI_Finalize().

Fortran C

CALL MPI_INIT(IERROR)
CALL MPI_FINALIZE(IERROR)

ierror = MPI_Init(&argc, &argv);
ierror = MPI_Finalize();

– In C the return value is always an integer error-code

–Not invoking MPI_Finalize() at the end may raise an error

– In C, the command line arguments must be passed to
MPI_Init().

CaSToRC

Basics
● Size and rank
– Get how many processes are running in a given communicator,

and the rank of the calling process within that communicator.

Fortran C
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NPROC, IERR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, RANK, IERR)

ierr = MPI_Comm_size(MPI_COMM_WORLD, &nproc);
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

– The communicator MPI_COMM_WORLD is set to contain all processes available,
after invocation of MPI_Init()

– The integer nproc will be the number of processes within the communicator
(should be the same as what was specified with mpirun)

– Here, MPI_Comm_rank() is our first example where an MPI function gives a
different result depending on the calling process. rank will be the rank of the
calling process within the communicator: a number from 0 to nproc-1.

CaSToRC

Basics

● Reduction
– Perform an operation over data on all processes and store

the result in one process

Fortran CALL MPI_REDUCE(A, B, 1, MPI_DOUBLE_PRECISION, MPI_SUM, 0, MPI_COMM_WORLD, IERR)

C ierr = MPI_Reduce(&a, &b, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD)

– Perform a sum over the double-precision variable a over all
processes and place the result into b on process 0.

– The fifth argument (MPI_SUM) is an MPI handle to the
operation (can e.g. be sum, prod, sub, or, etc.)

CaSToRC

 Putting it all together

● Kernel: array of 3x3 complex
times array of 3x4 complex

● Kernel is 0.5 Flops/Byte,
meaning a BW-bound on a
single node

● Kernel is OpenMP
parallelized

● Blue for non-vectorized, red
for vectorized

● Better saturation of BW
(and thus FP) with
vectorized instructions

CaSToRC

Exercises

CaSToRC

 pax8

Pax8 nodes: Intel X5560

Clock rate: 2.8 GHz

Peak DP: 1 SSE madd per cycle => 11.2 Gflop/s [core]

Cores per socket: 4

Sockets per node: 2

Bandwidth to memory: 32 Gbyte/s [shared between sockets]

L3 Cache size: 8 Mbytes [per socket, shared between cores]

CaSToRC

 Exercises

● There are 6 exercises, under directories: Ex1, Ex2, …,
Ex6

● The source files for each exercise are incomplete. Look
for “TODO” tags in the comments for instructions on
what to do

● Ex1 – Ex3 deals with a complex zaxpy operation
● Ex4 – Ex6 deals with a gauge-times-spinor operation

CaSToRC

 Exercise 1

● Ex1 has an (unoptimized) zaxpy operation set-up
– zaxpy: complex y ← a*x+y

● The makefile will make both a double precision and
single precision binary for you
– main: double precision binary
– mainf: single precision binary

● You need to:
– Place calls to stop_watch(), defined in utils.[ch] to time the
spinor_zaxpy() function
– Report the right bandwidth sustained in the printf statement

CaSToRC

 Exercise 1

● If you believe you have corrected the code
– Compile by invoking `make`
– Run the script: ./run.sh

● The script runs the benchmark for various combinations of
array sizes and repetitions, both for SP and DP

● The results are stored in zaxpy.dat and can be plotted
using gnuplot and the file zaxpy.gpl

CaSToRC

 Exercise 2

● Ex2 contains the same files as Ex1
● spinor_zaxpy.c has been modified
– Read the comments carefully
– You need to write the main loop-body for vectorizing the

single precision and double precision zaxpy operation
– You may follow the schedule given to you in the comments

● Once done, compile and run as before

CaSToRC

 Exercise 3

● Ex3 follows Ex2
● Here, you need to modify spinor_zaxpy.c to parallelize

the loop with OpenMP
● You also need to modify the Makefile to add the

appropriate compiler flags
● You can run again as before. You may also change the

number of OMP threads from inside the script

CaSToRC

 Exercise 4

● Ex4 is similar to the previous exercises in structure
● The kernel being measured now is the multiplication of an

array of 3x3 matrices times a spinor:

● In Ex4, an unoptimized version of this kernal is set-up (only
double precision)

● You need to count the bytes read/written per site and the
floating point operations per site and report these in the
printf statement in main.c

● Again, you can run and plot as in the previous exercises
●

ψ μ
a
(x)←uab(x) χ μ

b
(x)

CaSToRC

 Exercise 5

● Ex5 is an extension of Ex4
● OMP pragmas have been added to parallelize the

loop over the vector length
● A function mul_su3_spinor_intrins() has been

added to mul_su3_spinor.c
– This new function contains an incomplete vectorized

version of the matrix-vector multiplication
– You need to understand how the vectorization is being

done and complete the function

CaSToRC

 Exercise 5

● The main program compares the result of the
vectorized function with the non-optimized one

● If correct, you should see diffs not larger than 10-32

when running the program
● As before, you can run and plot the timings as a

function of the vector length

CaSToRC

 Exercise 6
● Ex6 builds upon Ex5
● The code here demonstrates a minimal MPI-

parallelized program
● You need to calculate the bandwidth and flop-rate to

be reported in printf
● You need to also sum over MPI processes the kernel

timings to obtain an average
● You can run and plot the data as before
● Note how run.sh is set-up. You can experiment with

different numbers of omp threads-per-process

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

