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Data assimilation in everyday life

Used information:
I Observations
I Knowledge about cars, roads
I Experience (=⇒ statistics)

Forecast error due to:
I Observation error
I Model error (icy road)
I Current conditions not

represented by statistics

Prediction: is it safe

to cross the street?
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Operational NWP Models at DWD

GME

Global model, hydrostatic

Triangular grid, mesh size: 20 km
60 levels (top: 5 hPa, ≈ 36 km)

(1474562×60 grid points)

Forecast times:
174h from 00Z, 12Z;

48h from 06Z, 18Z

COSMO-EU

Non-hydrostatic

Mesh size: 7 km
40 levels to ≈ 23 km

Forecast times:
78h from 00Z, 12Z;

48h from 06Z, 18Z

COSMO-DE

Non-hydrostatic,
“convection permitting”

Mesh size: 2.8 km
50 levels to ≈ 22 km

Forecast times:

21h from 00Z, 03Z, . . . , 21Z

COSMO-DE-EPS

Ensemble prediction system
20 ensemble members
(in 2013: 40 members)

Forecast times:

21h from 00Z, 03Z, . . . , 21Z
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The Global Observing System

In-Situ Observations
I Surface observations

(land, ship, buoys)
I Radiosondes
I Aircraft reports
I . . .

Remote Sensing Observations
I Satellite based

F geostationary
F polar orbiting
F LEOs (low-earth orbit),

partly research satellites

I RADAR
I LIDAR
I GNSS (GPS) ground observations
I . . .

Network very inhomogeneous, some areas not well observed!
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Intermittent (Cycled) Data Assimilation
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Data Assimilation for Dynamical Systems

x

f (x, t)

X

H(x)

yY

Dynamical system:
State space X , model operator (flow):

M : R×X → X

so that for all x ∈ X , s, t ∈ R:

M(0, x) = x , M(s,M(t, x)) =M(t+s, x)

Observation space: Y
Observation operator H : X 3 x → y ∈ Y
Given observations y1, . . . , yn, determine x(t)!

I Under-determined (ill-posed) inverse problem: number of observations
much smaller than degrees of freedom (related problem: tomography)

I Observations and models have errors
I Model variables may not be directly observed,

observation operator (in general) not injective, not invertible
I Data assimilation: combine observations with prior information
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Linear Systems: Kalman Filter (I)

Linear model, linear observation operator: H(x) = Hx
I Forecast error covariance (x f : forecast, xt : true state)

Pf = E
{

(x f − xt)(x f − xt)
T
}

I Observation error covariance (yt : true observation)

R = E
{

(y − yt)(y − yt)
T
}

Analysis: weighted linear combination of forecast and observations

xa = x f + K(y −Hx f )

Optimal “Kalman gain”

K = Pf HT
(

HPf HT + R
)−1

minimizes analysis error:

Pa = (I−KH)Pf =
(

(Pf )−1 + HTR−1H
)−1
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Kalman Filter (II)

Forecast step (Mi = M(ti → ti+1)):

x f (ti+1) = Mix
a(ti )

Pf (ti+1) = MiP
a(ti )MT

i + Q(ti )

Q: model error (system noise) covariance

Kalman filter gives optimal (minimal variance) solution
for linear models, linear observations, and Gaussian observation errors

Kalman filter computationally expensive:
I Solve large linear systems for many observations

(
O(105 . . . 106)

)
I Memory requirement: Pf has N2 elements (N: grid points × d.o.f.)
I Computation of Pa, forecast of Pf : ∼ N3 operations

=⇒ some approximations will be needed anyway

Generalization to more realistic, non-linear models required
I Observation impact in Kalman filter depends only on specified errors,

not on model state (“actual weather situation”)!
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Variational Method and Bayes Method P(FG)

P(Obs)

P(Ana)

P(FG)

P(Obs)

P(FG)

Maximum-likelihood method
I Likelihood for forecast

LPf (x |x f ) ∼ exp

[
−1

2
(x f − x)TPf −1

(x f − x)

]
I Likelihood for new observations

LR(x |y) ∼ exp

[
−1

2
(y −H(x))TR−1(y −H(x))

]
I Forecast and observations are independent ⇒ Likelihood function

L(x |x f , y) = LPf (x |x f ) LR(x |y)

I Bayesian interpretation: maximize a-posteriori probability
for given observations y and prior p(x):

p(x |y) =
p(y |x)p(x)

p(y)
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Variational method (3D-Var)

Cost function (J ≡ −2 ln p + const.):

J(x) = (x f − x)T
(

Pf
)−1

(x f − x) + (y −H(x))TR−1(y −H(x))

Minimization: conjugate-gradient (CG), quasi-Newton methods
I control variable: x
I dual formulation (control variable y): “Physical Space Analysis System”

Gradient of J:

1

2
∇xJ(x) =

(
Pf
)−1

(x − x f ) + HTR−1(H(x)− y)

with H from linearization of H(x)

J quadratic near minimum ⇒ Hessian:

1

2
∇x∇xJ(xa) =

(
Pf
)−1

+ HTR−1H = (Pa)−1

Solution x is best fit in model state space at t = t0
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General variational method (4D-Var)

Cost function for model trajectory x(t) =M(t, x(0))

J(x) = (x f (0)− x(0))TPf −1
(x f (0)− x(0))

+
∑
i

(y (i) −H(x(ti )))TR−1(y (i) −H(x(ti )))

+ (terms for model error) + . . .

Remarks

, 4D-Var solution: x(0), model trajectory with best fit to observations
within time window

, Implicit evolution of Pf matrix (but only in time window)
, For linear model mathematically equivalent to Kalman filter/smoother

/ Huge development efforts necessary (tangent linear and adjoint model)
/ Large computational ressources required, but poor scaling on modern

HPC architectures
/ Long-window 4D-Var ←→ strong nonlinearities at small scales
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Ensemble Methods in Data Assimilation

Whitaker (2005)

Why Ensemble Data Assimilation?

Motivation: Impact of observations (determined by R and by Pf )
should depend on actual weather situation (e.g. near fronts)

=⇒ explicit or implicit evolution of Pf essential!
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Ensemble Kalman Filters

Represent mean forecast, forecast uncertainty by ensemble (size: N)
of (equal-weight) model states x fi drawn from appropriate p.d.f.

Gaussian distribution characterized by first two moments:

Departures: x ′fi = x fi − x̄ f (x̄ f : Ensemble mean)

Ensemble covariance: Pf =
1

N − 1

N∑
i=1

x ′fi (x ′fi )T

Generalized analysis equations

Analysis mean: x̄a = x̄ f + K(ȳ −Hx̄ f )

Analysis departures: x ′a = x ′f + K̃(y ′ −Hx ′f )

Choose K, K̃ such that Pa represents true analysis error covariance

Implement model error Q as random forcing of forecast model
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“The” Ensemble Kalman Filter (EnKF)

Stochastic EnKF (Evensen, 1994; Burgers et al., 1998)

K̃ = K = Pf HT(HPf HT)−1 ⇐⇒ E
{
y ′(y ′)T

}
= R

Observations must be randomly perturbed using true error covariance!

rank(Pf )=N − 1: analysis increments projected onto low-dimensional
subspace of state space, leading to underestimation of analysis error
and risk of filter collapse

I Use cross-validation approach by splitting the ensemble
I Artificially increase forecast error (“covariance inflation”)

Pf has spurious long-range correlations (∼ N−1)
I Suppressing the influence of distant observations requires

“localization”:
Schur product of Pf with suitably chosen correlation function or
local analysis method (c.f. LETKF below)

I Localization effectively increases the rank of Pf (and K)
I Localization is computationally expensive, disturbs model balance

EnKF operationally used by Canadian Meteorological Service since
2005, now using 192 ensemble members (4 sub-ensembles × 48)
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Deterministic Ensemble Kalman Filters

Large family of Deterministic EnKF w/o need of perturbation of
observations: Ensemble Square-Root-Filters (EnSRF)
(see Whitaker and Hamill, 2002)

I Ensemble Adjustment Kalman Filter (EAKF)
I Ensemble Transform Kalman Filter (ETKF)
I . . .
I Different localization concepts, differing computational efficiency

Atmospheric dynamics locally low-dimensional (Patil et al., 2001)
I λi : Eigenvalues of covariance matrices of (fast-growing) “bred-vectors”

in a limited domain (1100 km × 1100 km)
I “Bred-vector”-dimension:

ψ(λ1, . . . , λk) =
(
∑

i

√
λi )

2∑
i λi

� k

For local covariances, about 40–100 ensemble members needed from
storm to global scales (Kalnay et al.)
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LETKF: Local Ensemble Transform Kalman-Filter

LETKF (Ott et al., 2004; Hunt et al., 2004, 2007):
I Forecast perturbations: Xf = [ x1 − x̄ | . . . | xN − x̄ ]

Obs. in ensemble space: Y = [ y1 − ȳ | . . . | yN − ȳ ] , yi ≡ H(xi )

I Local analysis in ensemble space, at each grid point:

P̃f = (N − 1)−1I , P̃a =
[
(N − 1)I + YTR−1Y

]−1

using all observations in the local region.
I Analysis mean: x̄a = x̄ f + Xf w̄ , w̄ = P̃aYR−1 (y − ȳ)

Analysis ensemble: Xa = Xf W + x̄a , W =
[
(N − 1) P̃a

]1/2

I Localization: apply to (inverse) observation error!
I Computationally very efficient, well parallelizable:

symmetric square-roots of N × N matrices at each grid-point
I No minimization =⇒ no adjoint of observation operators needed
I DWD: KENDA (experimental LETKF for COSMO-DE-EPS)
I Hybrid global 3D-Var/LETKF, with high-resolution deterministic

analysis: e.g. GFS at NCEP (operational); GME at DWD (experim.)
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Nonlinear filtering & Particle Filter

Bayes theorem

p(x |y) =
p(y |x)p(x)∫
p(y |x)p(x)dx

Ensemble representation of probability density (“particles”)

p(x) =
N∑
i=1

1

N
δ(x − xi )

Posterior density

p(x |y) =
N∑
i=1

wi δ(x − xi ) with weights wi =
p(y |xi )∑
i p(y |xi )

For Gaussian distributed observations

wi ∝ exp

[
−1

2
(y −H(xi ))TR−1(y −H(xi ))

]
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Standard Particle Filter

1

2
3

4

Sequential Importance Resampling Filter (van Leeuwen, 2003)

(1) Generate Ensemble as sample of the probability density, run the model
(2) Assign weights accordings to probability density given the observations
(3) Reject particles with small weights and
(4) replace by particles according to posteriory density (resampling)

Standard PF inefficient: many particles lost for many observations!

Required ensemble size ∼ exp (number of observations)!

For particle filters to be useful, we need importance sampling!
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Bayes Theorem and proposal transition density (I)

Stochastic model equation (β: model error, e.g. with β ∼ N(0,Q))

xn = f (xn−1) + βn−1

Transition density

p(xn|xn−1) = N(f (xn−1),Q)

Use transition density to derive marginal prior p.d.f. at time n

p(xn) =

∫
p(xn|xn−1)p(xn−1) dxn−1

Rewrite Bayes theorem using (arbitrary) proposal transition density q

p(xn|yn) =
p(yn|xn)p(xn)

p(yn)

=
p(yn|xn)

p(yn)

∫
p(xn|xn−1)p(xn−1) dxn−1

=
p(yn|xn)

p(yn)

∫
p(xn|xn−1)

q(xn|xn−1, yn)
q(xn|xn−1, yn)p(xn−1) dxn−1
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Proposal transition density (II)

Starting with equal-weight particles at n − 1, we have:

p(xn|yn) =
p(yn|xn)

p(yn)

1

N

N∑
i=1

p(xn|xn−1
i )

q(xn|xn−1
i , yn)

q(xn|xn−1
i , yn)

For each particle at n − 1 draw from proposal transition density q

p(xn|yn) =
1

N

N∑
i=1

p(yn|xni )

p(yn)

p(xni |x
n−1
i )

q(xni |x
n−1
i , yn)

δ(xn − xni )

Weights

wi =
p(yn|xni )

p(yn)︸ ︷︷ ︸
Likelihood weight

×
p(xni |x

n−1
i )

q(xni |x
n−1
i , yn)︸ ︷︷ ︸

Proposal weight

The proposal transition density is essentially arbitrary!
Can we use it to draw the particles closer to the observations?
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Implicit particle filter (I)

For weakly non-linear observation operators (H(xi ) ≈ Hxi )

wi · q ∝ exp

[
−1

2
(y −Hxi )

TR−1(y −Hxi )

− 1

2

(
xni − f (xn−1

i )
)T

Q−1
(
xni − f (xn−1

i )
)]

This is a quadratic function in (xni − µi ) with Hessian H.

The minimum µi can be determined by e.g. variational methods.
Choose proposal density as:

q(xni |xn−1
i , yn) = N(µi ,H

−1)

Resulting weights:

wi ∝ exp

[
−1

2

(
yn −Hf (xn−1

i )
)T

(HQHT + R)−1
(
yn −Hf (xn−1

i )
)]
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Implicit particle filter (II)

Implicit particle filter: run special 4D-Var for each particle to obtain µi

Determine (approximate) Hessian H

Generate proposal particles from

q(xni |xn−1
i , yn) = N(µi ,H

−1)

Calculate weights
(Note: no explicit expression for weights for non-linear models).

Resample

See Atkins et al., 2013, and references for a review and the connection
between variational methods and implicit particle methods.
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Equivalent-Weights Particle Filter

Van Leeuwen, 2010:
I Assume that model needs several time steps between observations
I Use simple proposal at each time step, e.g. corresponding to nudging:

q(xn|xn−1, yn) = N
(
f (xn−1) + S

(
yn −H(xn−1)

)
,Q
)

I Use different proposal at final time step to achieve similar weights.
Determine maximum achievable weight (wmax

i ) during last time step(s)
and choose target weight w target. Then set:

q(xn|xn−1, yn) =

{
q1(xn|xn−1, yn) for wmax

i > w target

q2(xn|xn−1, yn) for wmax
i < w target

For particles that cannot reach the target weight, one uses:

q2(xn|xn−1, yn) = N
(
f (xn−1),Q

)
Choose “special move” (different forcing) for high-weight particles

I Calculate weights, resample “lost” particles
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Comments on Particle Filters

Particle Filters do not need state covariances

No assumptions on linearity, Gaussianity, . . . , needed

Perfectly scalable (number of particles, dimensionality of problem)

Proposal transition density may solve the degeneracy problem
connected with many observations, apparently highly flexible

In practice, particle filters have only been shown yet to work with toy
models (Lorenz ’63, Lorenz ’96, barotropic vorticity equation, . . . ),
no experience with general circulation models:

I Arbitrary forcing terms may destroy model balances
I How to resample efficiently?
I Some kind of localization similar to Ensemble Kalman Filters may be

beneficial, but it is not clear how to do this
(cannot linearly combine particles!)

Many interesting ideas are being investigated . . .
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Concluding Remarks

Ensemble methods have been established as a valuable method in
data assimilation to estimate the analysis uncertainties

I Several competitive methods which are also efficient on modern
massively parallel computer architectures (EnKF, LETKF, hybrid
Var/EnKF methods, . . . )

I Ensemble DA already operationally used at some meteorological
centers, more centers to follow

I Key challenges have shifted: from poorly known Pf in deterministic DA
to poorly understood model error (Q) in ensemble DA
−→ many ideas, but mostly ad-hoc solutions and lots of tuning

While Ensemble Kalman Filters work well on the synoptic scale,
DA for the convective scale is still a subject of current research

I Ensemble methods are essential to capture the flow dependence of
uncertainties

I Strong non-linearities in models and observation operators pose
challenges to all methods

I Particle filters are a promising candidate, but efficient importance
sampling is a challenge to prevent ensemble collapse, still a lot to learn!
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Questions?



Localization

Let P be symmetric positive semi-definite, and C (the localization) be
a correlation function. The Schur product

P̃ ≡ P� C

defines the localized version of P

(P� C)(x , y) ≡ P(x , y)C (x , y)

which is also positive semi-definite.

(See Gaspari & Cohn, 1999, for a treatment of localization on the
sphere.)

In practice, localization of Pf is too expensive. Many authors apply
localization to (HPf HT) and (Pf HT), which leads to small but
systematic errors.

Harald Anlauf (DWD) Ensemble Methods in Data Assimilation 20. February 2013 29 / 31



Length- and time-scales in the atmosphere
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Global Observing System

Observation usage of DWD’s global data assimilation on 2011-02-01

Observation type variable Total used monitored

TEMP T , rh, u, v 57 258 5.4 % 199 973
PILOT u, v 4 200 0.4 % 15 122
SYNOP ps , u, v 112 647 10.7 % 114 558
DRIBU ps , u, v 6 353 0.6 % 6 643
Aircraft T , u, v 225 947 21.4 % 250 578
AMV geo u, v 86 620 8.2 % 99 844
AMV polar u, v 25 332 2.4 % 25 384
SCATT u10, v10 188 774 17.9 % 224 412
AMSU-A Tb 287 950 27.3 % 18 838 147
GPSRO bending angle 60 659 5.7 % 65 052

All data 1 055 740 100.0 % 19 839 713
Polar satellites 562 715 53.3 % 19 152 995
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