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SimCity E3 Gamepiay Trailer [English]

-

SimCity Social Trailer

source: www.youtube.com



http://youtu.be/jVvYXEChUzI
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Transport model system
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Multi-agent simulation
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e create a synthetic population of individual travelers (“agents”)
e resolve the demand/supply dependency iteratively
e in every iteration (simulated day):

1. every traveler chooses some planned travel behavior
2. all travelers execute their plans (i.e., they travel)
3. all travelers observe the resulting network conditions
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Discrete choice modeling
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decision maker n faces choice set C, of discrete alternatives

each alternative i € C, is given a real-valued utility U,;

decision maker selects alternative of maximum utility

nselects i & Uy = max Uy
JjeCy

choice dimensions in transportation

» living: activities (type, sequence, location)
» traveling: route, departure time, mode
» driving: gap acceptance, lane changing
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Discrete choice modeling
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e fundamental modeling assumption: utility maximization

e decompose utility into systematic and stochastic term:
Uni = Vni(xni; B) + €nj

> V,i(xni; B) depends on attributes x,; and parameters 3
» random term e,; captures uncertainty in the modeling

e random utility leads to probabilistic choice model

Pr(n selects i) = Pr(Us = max Uy))
JjeCn
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Discrete choice modeling
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e some term distributions imply closed-form solutions, e.g.
evni(xni;la)
Tjec, ¢ b

o general distributions require to resort to simulation

Pn(i| Cn) =

1.draw error terms ep;

draw from P, (i | Cy) & 2.select argmaxV,i(Xni; 3) + €ni

ieCp
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Discrete choice modeling

e estimating the model parameters 3 requires Monte Carlo
evaluation of P,(i | Cp) and VgP,(i | C,): simulated
Maximum Likelihood, Bayesian techniques ...

e choice sets C, get intractably large (all possible travel
behaviors)

» (importance) sampling of alternatives
» correct simulated behavior using sampling probabilities

o example: Metropolis-Hastings sampling of paths
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Traffic flow modeling
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e microscopic: car-following models

» driver selects acceleration based on immediate environment
» see talk of Vincenzo and Biaggio

e macroscopic: continuum models, incompatible with agents
e mesoscopic: middle ground between micro and macro

» move individual vehicles based on aggregate velocity fields
» fairly realistic and compatible with the agent-based approach
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[terations
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e represent a day-to-day learning process

> very intuitive, easy to communicate
» implicitly assumes a learning process
» actual “learning model” is very ad hoc

e are computational means to an end

» stationary process distribution is model solution
» stationarity = consistency between demand and supply
» justified if travelers learn expected network conditions
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[terations
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o iterations (hopefully) attain a unique, stationary distribution
e very limited understanding of this distribution
e continuous limit perspective sometimes helps

» assume continuum of travelers
» approximate network flow dynamics with smooth equations
» obtain analytical approximations of stationary mean values
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Behavioral calibration from network data
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Behavioral calibration from network data

modeling error
travel behavior
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Behavioral calibration from network data
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Some notation
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population of synthetic individuals n =1... N

individual n has a choice set C, of travel plans

M,; is probability that person n chooses travel plan i € C,

x(M) are average network conditions resulting from M = (M,;)

individual n chooses plan i according to model P,(i|x)
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Continuous limit approximation
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e iterative simulation is maximizer of prior entropy

N

W) =" [MaiIn Pa(ifx(M)) = M In M)

n=1ieC,

e interpretation: the system attains its most likely state
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Calibration of simulated behavior

o objective: condition simulated behavior Il on network data y

e approach: maximize posterior entropy
w(nly) = L(y|x(M)) + w(n)

where L(y|x(I)) is log-likelihood of y

e this can be solved analytically:

1y~ o ( 2D i

e implemented at individual level, within simulation loop
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Zurich case study: setting
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network with 60492 links
and 24180 nodes

187484 agents

hourly counts from 161
counting stations

jointly estimate route +
dpt. time + mode choice
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Zurich case study: evening peak
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Summary
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there exist credible models of human travel behavior

these can be put into models of the physical environment

the resulting model system is iteratively solved (“learning”)

MCMC ... one realization from this model takes one day
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